Barbara Bruno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7637854/publications.pdf

Version: 2024-02-01

1051969 993246 41 629 10 17 citations h-index g-index papers 43 43 43 547 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	What if Social Robots Look for Productive Engagement?. International Journal of Social Robotics, 2022, 14, 55-71.	3.1	13
2	Teachers' Perspective on Fostering Computational Thinking Through Educational Robotics. Advances in Intelligent Systems and Computing, 2022, , 177-185.	0.5	6
3	Exploring a Handwriting Programming Language for Educational Robots. Advances in Intelligent Systems and Computing, 2022, , 268-275.	0.5	1
4	The Competent Computational Thinking Test: Development and Validation of an Unplugged Computational Thinking Test for Upper Primary School. Journal of Educational Computing Research, 2022, 60, 1818-1866.	3.6	7
5	Socially Assistive Robots, Older Adults and Research Ethics: The Case for Case-Based Ethics Training. International Journal of Social Robotics, 2021, 13, 647-659.	3.1	8
6	A computer science and robotics integration model for primary school: evaluation of a large-scale in-service K-4 teacher-training program. Education and Information Technologies, 2021, 26, 2445-2475.	3.5	33
7	Investigating the Role of Educational Robotics in Formal Mathematics Education: The Case of Geometry forÂ15-Year-Old Students. Lecture Notes in Computer Science, 2021, , 67-81.	1.0	1
8	The symbiotic relationship between educational robotics and computer science in formal education. Education and Information Technologies, 2021, 26, 5077-5107.	3.5	13
9	Detecting Compensatory Motions and Providing Informative Feedback During a Tangible Robot Assisted Game for Post-Stroke Rehabilitation. , 2021, , .		3
10	Many are the ways to learn identifying multi-modal behavioral profiles of collaborative learning in constructivist activities. International Journal of Computer-Supported Collaborative Learning, 2021, 16, 485-523.	1.9	13
11	Can Human-Inspired Learning Behaviour Facilitate Human–Robot Interaction?. International Journal of Social Robotics, 2020, 12, 173-186.	3.1	7
12	AlloHaptic: Robot-Mediated Haptic Collaboration for Learning Linear Functions. , 2020, , .		5
13	Robot Agreeableness and User Engagement in Verbal Human-Robot Interaction. , 2020, , .		3
14	Iterative Design and Evaluation of a Tangible Robot-Assisted Handwriting Activity for Special Education. Frontiers in Robotics and Al, 2020, 7, 29.	2.0	21
15	What Teachers Need for Orchestrating Robotic Classrooms. Lecture Notes in Computer Science, 2020, , 87-101.	1.0	4
16	Culture as a Sensor? A Novel Perspective on Human Activity Recognition. International Journal of Social Robotics, 2019, 11, 797-814.	3.1	4
17	A multi-sensor dataset of human-human handover. Data in Brief, 2019, 22, 109-117.	0.5	16
18	Knowledge Representation for Culturally Competent Personal Robots: Requirements, Design Principles, Implementation, and Assessment. International Journal of Social Robotics, 2019, 11, 515-538.	3.1	49

#	Article	IF	Citations
19	The CARESSES EU-Japan Project: Making Assistive Robots Culturally Competent. Lecture Notes in Electrical Engineering, 2019, , 151-169.	0.3	7
20	Designing an Experimental and a Reference Robot to Test and Evaluate the Impact of Cultural Competence in Socially Assistive Robotics. , 2019, , .		2
21	Detection of bimanual gestures everywhere: Why it matters, what we need and what is missing. Robotics and Autonomous Systems, 2018, 99, 30-49.	3.0	2
22	Flexible human–robot cooperation models for assisted shop-floor tasks. Mechatronics, 2018, 51, 97-114.	2.0	52
23	Collaborative Development Within a Social Robotic, Multi-Disciplinary Effort: the CARESSES Case Study., 2018,,.		4
24	Encoding Guidelines for a Culturally Competent Robot for Elderly Care. , 2018, , .		17
25	Interleaved Online Task Planning, Simulation, Task Allocation and Motion Control for Flexible Human-Robot Cooperation. , 2018, , .		12
26	Culturally aware Planning and Execution of Robot Actions. , 2018, , .		21
27	Online Human Gesture Recognition using Recurrent Neural Networks and Wearable Sensors. , 2018, , .		15
28	Culturally-Competent Human-Robot Verbal Interaction., 2018,,.		5
29	On Autonomous Robotic Cooperation Capabilities within Factory and Logistic Scenarios. Procedia Manufacturing, 2017, 11, 147-163.	1.9	1
30	Gesture-based robot control: Design challenges and evaluation with humans. , 2017, , .		29
31	Modelling the influence of cultural information on vision-based human home activity recognition. , 2017, , .		8
32	A framework for culture-aware robots based on fuzzy logic. , 2017, , .		7
33	Paving the way for culturally competent robots: A position paper. , 2017, , .		40
34	Multi-modal sensing for human activity recognition. , 2015, , .		3
35	HOOD: A real environment Human Odometry Dataset for wearable sensor placement analysis. , $2015, \ldots$		2
36	Wearable Inertial Sensors: Applications, Challenges, and Public Test Benches. IEEE Robotics and Automation Magazine, 2015, 22, 116-124.	2.2	29

Barbara Bruno

#	Article	IF	CITATION
37	A public domain dataset for ADL recognition using wrist-placed accelerometers. , 2014, , .		29
38	Using Fuzzy Logic to Enhance Classification of Human Motion Primitives. Communications in Computer and Information Science, 2014, , 596-605.	0.4	10
39	Analysis of human behavior recognition algorithms based on acceleration data., 2013,,.		79
40	Functional requirements and design issues for a socially assistive robot for elderly people with mild cognitive impairments. , $2013, \ldots$		11
41	Human motion modelling and recognition: A computational approach. , 2012, , .		34