Raimo Kalevi Pohjanvirta

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/7637338/raimo-kalevi-pohjanvirta-publications-by-citations.pdf$

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

163 papers

3,613 citations

35 h-index

53 g-index

176 ext. papers

3,822 ext. citations

4.5 avg, IF

4.94 L-index

#	Paper	IF	Citations
163	Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. <i>Molecular Pharmacology</i> , 2006 , 69, 140-53	4.3	263
162	Point mutation in intron sequence causes altered carboxyl-terminal structure in the aryl hydrocarbon receptor of the most 2,3,7,8-tetrachlorodibenzo-p-dioxin-resistant rat strain. <i>Molecular Pharmacology</i> , 1998 , 54, 86-93	4.3	149
161	Toxicological implications of polymorphisms in receptors for xenobiotic chemicals: the case of the aryl hydrocarbon receptor. <i>Toxicology and Applied Pharmacology</i> , 2005 , 207, 43-51	4.6	98
160	The AH receptor and a novel gene determine acute toxic responses to TCDD: segregation of the resistant alleles to different rat lines. <i>Toxicology and Applied Pharmacology</i> , 1999 , 155, 71-81	4.6	95
159	Physicochemical differences in the AH receptors of the most TCDD-susceptible and the most TCDD-resistant rat strains. <i>Toxicology and Applied Pharmacology</i> , 1999 , 155, 82-95	4.6	88
158	Tissue distribution, metabolism, and excretion of 14C-TCDD in a TCDD-susceptible and a TCDD-resistant rat strain. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1990 , 66, 93-100		86
157	Comparative acute lethality of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 1,2,3,7,8-pentachlorodibenzo-p-dioxin and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin in the most TCDD-susceptible and the most TCDD-resistant rat strain. <i>Basic and Clinical Pharmacology and</i>		80
156	Dioxin-responsive AHRE-II gene battery: identification by phylogenetic footprinting. <i>Biochemical and Biophysical Research Communications</i> , 2004 , 321, 707-15	3.4	78
155	Target tissue morphology and serum biochemistry following 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in a TCDD-susceptible and a TCDD-resistant rat strain. <i>Fundamental and Applied Toxicology</i> , 1989 , 12, 698-712		77
154	Hepatic Ah-receptor levels and the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hepatic microsomal monooxygenase activities in a TCDD-susceptible and -resistant rat strain. <i>Toxicology and Applied Pharmacology</i> , 1988 , 92, 131-40	4.6	77
153	Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. <i>Frontiers in Neuroendocrinology</i> , 2010 , 31, 452-78	8.9	73
152	microRNAs in adult rodent liver are refractory to dioxin treatment. <i>Toxicological Sciences</i> , 2007 , 99, 470	-8474	72
151	Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: comparison of rat and mouse. <i>BMC Genomics</i> , 2008 , 9, 419	4.5	68
150	Systematic evaluation of medium-throughput mRNA abundance platforms. <i>Rna</i> , 2013 , 19, 51-62	5.8	61
149	Han/Wistar rats are exceptionally resistant to TCDD. I. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1987 , 60, 145-50		60
148	TCDD activates Mdm2 and attenuates the p53 response to DNA damaging agents. <i>Carcinogenesis</i> , 2005 , 26, 201-8	4.6	59
147	Prenatal testosterone and luteinizing hormone levels in male rats exposed during pregnancy to 2,3,7,8-tetrachlorodibenzo-p-dioxin and diethylstilbestrol. <i>Molecular and Cellular Endocrinology</i> , 2001 , 178, 169-79	4.4	55

(2004-2018)

146	Risk for animal and human health related to the presence of dioxins and dioxin-like PCBs in feed and food. <i>EFSA Journal</i> , 2018 , 16, e05333	2.3	55
145	Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on liver phosphoenolpyruvate carboxykinase (PEPCK) activity, glucose homeostasis and plasma amino acid concentrations in the most TCDD-susceptible and the most TCDD-resistant rat strains. <i>Archives of Toxicology</i> , 1999 , 73, 323-36	5.8	53
144	Exposure to 2,3,7,8-tetrachlorodibenzo-para-dioxin leads to defective dentin formation and pulpal perforation in rat incisor tooth. <i>Toxicology</i> , 1993 , 81, 1-13	4.4	53
143	Evaluation of various housekeeping genes for their applicability for normalization of mRNA expression in dioxin-treated rats. <i>Chemico-Biological Interactions</i> , 2006 , 160, 134-49	5	51
142	Primary structure and inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) of aryl hydrocarbon receptor repressor in a TCDD-sensitive and a TCDD-resistant rat strain. <i>Biochemical and Biophysical Research Communications</i> , 2004 , 315, 123-31	3.4	49
141	Differential expression profiling of the hepatic proteome in a rat model of dioxin resistance: correlation with genomic and transcriptomic analyses. <i>Molecular and Cellular Proteomics</i> , 2006 , 5, 882-9	47.6	48
140	Dioxin-dependent and dioxin-independent gene batteries: comparison of liver and kidney in AHR-null mice. <i>Toxicological Sciences</i> , 2009 , 112, 245-56	4.4	45
139	In vivo up-regulation of aryl hydrocarbon receptor expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a dioxin-resistant rat model. <i>Biochemical Pharmacology</i> , 2001 , 62, 1565-78	6	43
138	TCDD-induced anorexia and wasting syndrome in rats: effects of diet-induced obesity and nutrition. <i>Pharmacology Biochemistry and Behavior</i> , 1999 , 62, 735-42	3.9	42
137	Aryl hydrocarbon receptor (AHR)-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities. <i>BMC Genomics</i> , 2010 , 11, 263	4.5	40
136	Studies on the role of lipid peroxidation in the acute toxicity of TCDD in rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1990 , 66, 399-408		40
135	Arrest of rat molar tooth development by lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. <i>Toxicology and Applied Pharmacology</i> , 2001 , 173, 38-47	4.6	39
134	The AH receptor of the most dioxin-sensitive species, guinea pig, is highly homologous to the human AH receptor. <i>Biochemical and Biophysical Research Communications</i> , 2001 , 285, 1121-9	3.4	39
133	Biochemical effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds on the central nervous system. <i>International Journal of Biochemistry and Cell Biology</i> , 1995 , 27, 443-55	5.6	39
132	Hepatic transcriptomic responses to TCDD in dioxin-sensitive and dioxin-resistant rats during the onset of toxicity. <i>Toxicology and Applied Pharmacology</i> , 2011 , 251, 119-29	4.6	38
131	Aryl hydrocarbon receptor-dependent induction of flavin-containing monooxygenase mRNAs in mouse liver. <i>Drug Metabolism and Disposition</i> , 2008 , 36, 2499-505	4	38
130	Unexpected gender difference in sensitivity to the acute toxicity of dioxin in mice. <i>Toxicology and Applied Pharmacology</i> , 2012 , 262, 167-76	4.6	36
129	Lactational exposure of Han/Wistar rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin interferes with enamel maturation and retards dentin mineralization. <i>Journal of Dental Research</i> , 2004 , 83, 139-44	8.1	35

128	Patterns of dioxin-altered mRNA expression in livers of dioxin-sensitive versus dioxin-resistant rats. <i>Archives of Toxicology</i> , 2008 , 82, 809-30	5.8	33
127	Restructured transactivation domain in hamster AH receptor. <i>Biochemical and Biophysical Research Communications</i> , 2000 , 273, 272-81	3.4	33
126	TCDD dysregulation of 13 AHR-target genes in rat liver. <i>Toxicology and Applied Pharmacology</i> , 2014 , 274, 445-54	4.6	30
125	Persistent, low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effect on aryl hydrocarbon receptor expression in a dioxin-resistance model. <i>Toxicology and Applied Pharmacology</i> , 2001 , 175, 43-	53 ^{4.6}	30
124	2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced anorexia and wasting syndrome in rats: aggravation after ventromedial hypothalamic lesion. <i>European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section</i> , 1995 , 293, 309-17		30
123	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induced ethoxyresorufin-O-deethylase (EROD) and aldehyde dehydrogenase (ALDH3) activities in the brain and liver. A comparison between the most TCDD-susceptible and the most TCDD-resistant rat strain. <i>Biochemical Pharmacology</i> , 1993 , 46, 651-9	6	29
122	2,3,7,8-Tetrachlorodibenzo-p-dioxin enhances responsiveness to post-ingestive satiety signals. <i>Toxicology</i> , 1990 , 63, 285-99	4.4	29
121	Transgenic mouse lines expressing rat AH receptor variantsa new animal model for research on AH receptor function and dioxin toxicity mechanisms. <i>Toxicology and Applied Pharmacology</i> , 2009 , 236, 166-82	4.6	27
120	Comparison of acute toxicities of indolo[3,2-b]carbazole (ICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive rats. <i>Food and Chemical Toxicology</i> , 2002 , 40, 1023-32	4.7	27
119	The central nervous system may be involved in TCDD toxicity. <i>Toxicology</i> , 1989 , 58, 167-74	4.4	27
118	Aryl hydrocarbon receptor splice variants in the dioxin-resistant rat: tissue expression and transactivational activity. <i>Molecular Pharmacology</i> , 2007 , 72, 956-66	4.3	26
117	Male and female mice show significant differences in hepatic transcriptomic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. <i>BMC Genomics</i> , 2015 , 16, 625	4.5	25
116	Inter-strain heterogeneity in rat hepatic transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). <i>Toxicology and Applied Pharmacology</i> , 2012 , 260, 135-45	4.6	25
115	Bone resorption by aryl hydrocarbon receptor-expressing osteoclasts is not disturbed by TCDD in short-term cultures. <i>Life Sciences</i> , 2005 , 77, 1351-66	6.8	25
114	Effect of TCDD on mRNA expression of genes encoding bHLH/PAS proteins in rat hypothalamus. <i>Toxicology</i> , 2005 , 208, 1-11	4.4	25
113	Mechanism of action of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). <i>Toxicology and Applied Pharmacology</i> , 1990 , 105, 508-9	4.6	25
112	Developmental toxicity of dioxin to mouse embryonic teeth in vitro: arrest of tooth morphogenesis involves stimulation of apoptotic program in the dental epithelium. <i>Toxicology and Applied Pharmacology</i> , 2004 , 194, 24-33	4.6	24
111	Toxic equivalency factors do not predict the acute toxicities of dioxins in rats. <i>European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section</i> , 1995 , 293, 341-53		24

(2004-1996)

110	Mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces circulating melatonin levels in the rat. <i>Toxicology</i> , 1996 , 107, 85-97	4.4	24	
109	Identification of novel splice variants of ARNT and ARNT2 in the rat. <i>Biochemical and Biophysical Research Communications</i> , 2003 , 303, 1095-100	3.4	23	
108	TCDD resistance is inherited as an autosomal dominant trait in the rat. <i>Toxicology Letters</i> , 1990 , 50, 49	-5 6 4	23	
107	2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced accumulation of biliverdin and hepatic peliosis in rats. <i>Toxicological Sciences</i> , 2003 , 71, 112-23	4.4	22	
106	Changes in rat brain monoamines, monoamine metabolites and histamine after a single administration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). <i>Basic and Clinical Pharmacology and Toxicology</i> , 1990 , 67, 260-5		21	
105	Differences in acute toxicity syndromes of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin in rats. <i>Toxicology</i> , 2007 , 235, 39-51	4.4	20	
104	TCDD decreases rapidly and persistently serum melatonin concentration without morphologically affecting the pineal gland in TCDD-resistant Han/Wistar rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1991 , 69, 427-32		20	
103	TCDD reduces serum melatonin levels in Long-Evans rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1989 , 65, 239-40		20	
102	Genome-wide effects of acute progressive feed restriction in liver and white adipose tissue. <i>Toxicology and Applied Pharmacology</i> , 2008 , 230, 41-56	4.6	19	
101	TCDD-induced hypophagia is not explained by nausea. <i>Pharmacology Biochemistry and Behavior</i> , 1994 , 47, 273-82	3.9	19	
100	Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hormones of energy balance in a TCDD-sensitive and a TCDD-resistant rat strain. <i>International Journal of Molecular Sciences</i> , 2014 , 15, 13938-66	6.3	18	
99	AHR Ligands: Promiscuity in Binding and Diversity in Response 2011 , 63-79		18	
98	Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on tryptophan and glucose homeostasis in the most TCDD-susceptible and the most TCDD-resistant species, guinea pigs and hamsters. <i>Archives of Toxicology</i> , 1995 , 69, 677-83	5.8	18	
97	Simultaneous exposure of rats to dioxin and carbon monoxide reduces the xenobiotic but not the hypoxic response. <i>Biological Chemistry</i> , 2004 , 385, 291-4	4.5	17	
96	Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats. <i>Toxicology and Applied Pharmacology</i> , 2017 , 326, 54-65	4.6	16	
95	Multigenerational and Transgenerational Effects of Dioxins. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	16	
94	Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD. <i>Toxicology and Applied Pharmacology</i> , 2015 , 284, 188-96	4.6	16	
93	Effects of epidermal growth factor receptor deficiency and 2,3,7,8-tetrachlorodibenzo-p-dioxin on fetal development in mice. <i>Toxicology Letters</i> , 2004 , 150, 285-91	4.4	16	

92	Screening of pharmacological agents given peripherally with respect to TCDD-induced wasting syndrome in Long-Evans rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1988 , 63, 240-7		16	
91	Compendium of TCDD-mediated transcriptomic response datasets in mammalian model systems. <i>BMC Genomics</i> , 2017 , 18, 78	4.5	15	
90	Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and leptin on hypothalamic mRNA expression of factors participating in food intake regulation in a TCDD-sensitive and a TCDD-resistant rat strain. <i>Journal of Biochemical and Molecular Toxicology</i> , 2005 , 19, 139-48	3.4	15	
89	Changes in food intake and food selection in rats after 2,3,7, 8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. <i>Pharmacology Biochemistry and Behavior</i> , 2000 , 65, 381-7	3.9	15	
88	Acute neurobehavioural effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in Han/Wistar rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1992 , 71, 284-8		15	
87	Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on heme oxygenase-1, biliverdin IXalpha reductase and delta-aminolevulinic acid synthetase 1 in rats with wild-type or variant AH receptor. <i>Toxicology</i> , 2008 , 250, 132-42	4.4	13	
86	Commercial processed food may have endocrine-disrupting potential: soy-based ingredients making the difference. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 1722-7	3.2	11	
85	Body weight loss and changes in tryptophan homeostasis by chlorinated dibenzo-p-dioxin congeners in the most TCDD-susceptible and the most TCDD-resistant rat strain. <i>Archives of Toxicology</i> , 1998 , 72, 769-76	5.8	11	
84	Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on plasma and tissue beta-endorphin-like immunoreactivity in the most TCDD-susceptible and the most TCDD-resistant rat strain. <i>Life Sciences</i> , 1993 , 53, 1479-87	6.8	11	
83	Characterization of the enhanced responsiveness to postingestive satiety signals in 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-treated Han/Wistar rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1991 , 69, 433-41		11	
82	Effect of a single lethal dose of TCDD on the levels of monoamines, their metabolites and tryptophan in discrete brain nuclei and peripheral tissues of Long-Evans rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1993 , 72, 279-85		11	
81	Immediate and highly sensitive aversion response to a novel food item linked to AH receptor stimulation. <i>Toxicology Letters</i> , 2011 , 203, 252-7	4.4	10	
80	Characterization of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced brain serotonin metabolism in the rat. <i>European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section</i> , 1994 , 270, 157-66		10	
79	TCDD decreases brain inositol concentrations in the rat. <i>Toxicology Letters</i> , 1994 , 70, 363-72	4.4	10	
78	Expression of the mediators of dioxin toxicity, aryl hydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT), is developmentally regulated in mouse teeth. <i>International Journal of Developmental Biology</i> , 2002 , 46, 295-300	1.9	10	
77	Estrogenic activity of wastewater, bottled waters and tap water in Finland as assessed by a yeast bio-reporter assay. <i>Scandinavian Journal of Public Health</i> , 2015 , 43, 770-5	3	9	
76	Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo-Edioxin. <i>Toxicology</i> , 2015 , 328, 93-101	4.4	9	
75	Dietary exposure of Nigerians to mutagens and estrogen-like chemicals. <i>International Journal of Environmental Research and Public Health</i> , 2014 , 11, 8347-67	4.6	9	

(2014-2012)

74	Bayesian modeling of reproducibility and robustness of RNA reverse transcription and quantitative real-time polymerase chain reaction. <i>Analytical Biochemistry</i> , 2012 , 428, 81-91	3.1	9
73	Characterization of the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-provoked strong and rapid aversion to unfamiliar foodstuffs in rats. <i>Toxicology</i> , 2011 , 283, 140-50	4.4	9
72	Interference by 2,3,7,8-tetrachlorodibenzo-p-dioxin with cultured mouse submandibular gland branching morphogenesis involves reduced epidermal growth factor receptor signaling. <i>Toxicology and Applied Pharmacology</i> , 2006 , 212, 200-11	4.6	9
71	The loss of glucoprivic feeding is an early-stage alteration in TCDD-treated Han/Wistar rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 1990 , 67, 441-3		9
70	Do new hypotheses on the mechanism of action of dioxins help in risk evaluation?. <i>Science of the Total Environment</i> , 1991 , 106, 21-31	10.2	9
69	Dioxin-induced perturbations in tryptophan homeostasis in laboratory animals. <i>Advances in Experimental Medicine and Biology</i> , 1999 , 467, 433-42	3.6	9
68	Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-Edioxin. <i>Toxicology and Applied Pharmacology</i> , 2015 , 288, 223-31	4.6	8
67	Estrogenic Activities of Food Supplements and Beers as Assessed by a Yeast Bioreporter Assay. Journal of Dietary Supplements, 2018 , 15, 665-672	2.3	8
66	In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. <i>Toxicology in Vitro</i> , 2018 , 52, 178-188	3.6	8
65	Significant interspecies differences in induction profiles of hepatic CYP enzymes by TCDD in bank and field voles. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 663-71	3.8	7
64	Validating reference genes within a mouse model system of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity. <i>Chemico-Biological Interactions</i> , 2013 , 205, 63-71	5	7
63	Cross-species transcriptomic analysis elucidates constitutive aryl hydrocarbon receptor activity. <i>BMC Genomics</i> , 2014 , 15, 1053	4.5	7
62	Effects of a single exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on macro- and microstructures of feeding and drinking in two differently TCDD-sensitive rat strains. <i>Pharmacology Biochemistry and Behavior</i> , 2011 , 99, 487-99	3.9	7
61	Cadmium intake of moose hunters in Finland from consumption of moose meat, liver and kidney. <i>Food Additives and Contaminants</i> , 2003 , 20, 453-63		7
60	mRNA levels in control rat liver display strain-specific, hereditary, and AHR-dependent components. <i>PLoS ONE</i> , 2011 , 6, e18337	3.7	7
59	Aryl hydrocarbon receptor agonists trigger avoidance of novel food in rats. <i>Physiology and Behavior</i> , 2016 , 167, 49-59	3.5	7
58	AHR in energy balance regulation. Current Opinion in Toxicology, 2017, 2, 8-14	4.4	5
57	Genotoxicity of processed food items and ready-to-eat snacks in Finland. <i>Food Chemistry</i> , 2014 , 162, 206-14	8.5	5

56	Identification of reference proteins for Western blot analyses in mouse model systems of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity. <i>PLoS ONE</i> , 2014 , 9, e110730	3.7	5
55	Overview of AHR Functional Domains and the Classical AHR Signaling Pathway: Induction of Drug Metabolizing Enzymes 2011 , 33-45		5
54	Assessment by c-Fos immunostaining of changes in brain neural activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and leptin in rats. <i>Basic and Clinical Pharmacology and Toxicology</i> , 2006 , 98, 363-71	3.1	5
53	Postnatal development of resistance to short-term high-dose toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in TCDD-resistant and -semiresistant rats. <i>Toxicology and Applied Pharmacology</i> , 2004 , 196, 11-9	4.6	5
52	2,3,7,8 Tetrachlorodibenzo-p-dioxin-induced RNA abundance changes identify Ackr3, Col18a1, Cyb5a and Glud1 as candidate mediators of toxicity. <i>Archives of Toxicology</i> , 2017 , 91, 325-338	5.8	4
51	2,3,7,8-Tetrachlorodibenzo-p-dioxin modifies alternative splicing in mouse liver. <i>PLoS ONE</i> , 2019 , 14, e0219747	3.7	4
50	AHR-Active Compounds in the Human Diet 2011 , 331-342		4
49	Role of the AHR and its Structure in TCDD Toxicity 2011 , 179-196		4
48	Circadian differences between two rat strains in their feeding and drinking micro- and macrostructures. <i>Biological Rhythm Research</i> , 2011 , 42, 385-405	0.8	4
47	Modulation of TCDD-induced wasting syndrome by portocaval anastomosis and vagotomy in Long-Evans and Han/Wistar rats. <i>European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section</i> , 1995 , 292, 277-85		4
46	Acute toxicity of perfluorodecanoic acid and cobalt protoporphyrin in a TCDD-sensitive and a TCDD-resistant rat strain. <i>Chemosphere</i> , 1992 , 25, 1233-1238	8.4	4
45	Transgenerational epigenetic and transcriptomic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure in rat. <i>Archives of Toxicology</i> , 2020 , 94, 1613-1624	5.8	4
44	History of Research on the AHR 2011 , 1-32		3
43	The AHR/ARNT Dimer and Transcriptional Coactivators 2011 , 93-100		3
42	Nongenomic Route of Action of TCDD: Identity, Characteristics, and Toxicological Significance 2011 , 197-215		3
41	The Toxic Equivalency Principle and its Application in Dioxin Risk Assessment 2011 , 317-330		3
40	Invertebrate AHR Homologs: Ancestral Functions in Sensory Systems 2011 , 405-411		3
39	Involvement of the AHR in Development and Functioning of the Female and Male Reproductive Systems 2011 , 437-466		3

(1995-2021)

38	Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism: Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice. <i>Reproductive Toxicology</i> , 2021 , 101, 33-49	3.4	3
37	Comparative toxicoproteogenomics of mouse and rat liver identifies TCDD-resistance genes. <i>Archives of Toxicology</i> , 2019 , 93, 2961-2978	5.8	2
36	Aryl hydrocarbon receptor is indispensable for Ehaphthoflavone-induced novel food avoidance and may be involved in LiCl-triggered conditioned taste aversion in rats. <i>Physiology and Behavior</i> , 2019 , 204, 58-64	3.5	2
35	Structural and Functional Diversification of AHRs during Metazoan Evolution 2011 , 387-403		2
34	Role of AHR in the Development of the Liver and Blood Vessels 2011 , 413-421		2
33	Functional Interactions of AHR with other Receptors 2011 , 127-141		2
32	Differences in binding of epidermal growth factor to liver membranes of TCDD-resistant and TCDD-sensitive rats after a single dose of TCDD. <i>Environmental Toxicology and Pharmacology</i> , 1996 , 1, 109-16	5.8	2
31	Polycyclic Aromatic Hydrocarbons (PAHs) in Select Commercially Processed Meat and Fish Products in Finland and the Mutagenic Potential of These Food Items. <i>Polycyclic Aromatic Compounds</i> , 2020 , 40, 927-933	1.3	2
30	In vitro estrogenic, cytotoxic, and genotoxic profiles of the xenoestrogens 8-prenylnaringenine, genistein and tartrazine. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 27988-27997	5.1	2
29	Transcriptomic Impact of IMA-08401, a Novel AHR Agonist Resembling Laquinimod, on Rat Liver. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	1
28	The E3 Ubiquitin Ligase Activity of Transcription Factor AHR Permits Nongenomic Regulation of Biological Pathways 2011 , 143-156		1
27	Epigenetic Mechanisms in AHR Function 2011 , 157-178		1
26	Effects of Dioxins on Teeth and Bone: The Role of AHR 2011 , 285-297		1
25	Adverse Health Outcomes Caused By Dioxin-Activated AHR in Humans 2011 , 307-316		1
24	The AHR in the Control of Cell Cycle and Apoptosis 2011 , 467-483		1
23	The AHR Regulates Cell Adhesion and Migration by Interacting with Oncogene and Growth Factor-Dependent Signaling 2011 , 485-497		1
22	AHR and the Circadian Clock 2011 , 511-522		1
21	Alterations in plasma tryptophan binding to albumin in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated Long-Evans rats. <i>European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section</i> , 1995 , 293, 115-21		1

20	Target Tissue Morphology and Serum Biochemistry following 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Exposure in a TCDD-Susceptible and a TCDD-Resistant Rat Strain. <i>Toxicological Sciences</i> , 1989 , 12, 698-712	4.4	1
19	Identifying TCDD-resistance genes via murine and rat comparative genomics and transcriptomics		1
18	Effects of a high-fat diet and global aryl hydrocarbon receptor deficiency on energy balance and liver retinoid status in male Sprague-Dawley rats. <i>Journal of Nutritional Biochemistry</i> , 2021 , 95, 108762	6.3	1
17	Dioxin Response Elements and Regulation of Gene Transcription 2011 , 81-91		O
16	Role of Chaperone Proteins in AHR Function 2011 , 47-61		0
15	Influence of HIF1and NRF2 Signaling on AHR-Mediated Gene Expression, Toxicity, and Biological Functions 2011 , 109-126		Ο
14	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) increases bilirubin formation but hampers quantitative hepatic conversion of biliverdin to bilirubin in rats with wild-type AH receptor. <i>Basic and Clinical Pharmacology and Toxicology</i> , 2014 , 114, 497-509	3.1	
13	TCDD, AHR, and Immune Regulation 2011 , 277-284		
12	Regulation of AHR Activity by the AHR Repressor (AHRR) 2011 , 101-108		
11	Interspecies Heterogeneity in the Hepatic Transcriptomic Response to AHR Activation by Dioxin 2011 , 217-227		
11			
	2011 , 217-227		
10	2011, 217-227 Modulation of AHR Function by Heavy Metals and Disease States 2011, 343-372		
10	2011, 217-227 Modulation of AHR Function by Heavy Metals and Disease States 2011, 343-372 Impacts of Dioxin-Activated AHR Signaling in Fish and Birds 2011, 299-306		
10 9 8	Modulation of AHR Function by Heavy Metals and Disease States 2011, 343-372 Impacts of Dioxin-Activated AHR Signaling in Fish and Birds 2011, 299-306 Involvement of the AHR in Cardiac Function and Regulation of Blood Pressure 2011, 423-436 Transgenic Mice with a Constitutively Active AHR: A Model for Human Exposure to Dioxin and other		
10 9 8 7	Modulation of AHR Function by Heavy Metals and Disease States 2011, 343-372 Impacts of Dioxin-Activated AHR Signaling in Fish and Birds 2011, 299-306 Involvement of the AHR in Cardiac Function and Regulation of Blood Pressure 2011, 423-436 Transgenic Mice with a Constitutively Active AHR: A Model for Human Exposure to Dioxin and other AHR Ligands 2011, 373-385 The Developmental Toxicity of Dioxin to the Developing Male Reproductive System in the Rat:		
10 9 8 7 6	Modulation of AHR Function by Heavy Metals and Disease States 2011, 343-372 Impacts of Dioxin-Activated AHR Signaling in Fish and Birds 2011, 299-306 Involvement of the AHR in Cardiac Function and Regulation of Blood Pressure 2011, 423-436 Transgenic Mice with a Constitutively Active AHR: A Model for Human Exposure to Dioxin and other AHR Ligands 2011, 373-385 The Developmental Toxicity of Dioxin to the Developing Male Reproductive System in the Rat: Relevance of the AHR for Risk Assessment 2011, 267-276		

LIST OF PUBLICATIONS

- Dioxin-Activated AHR: Toxic Responses and the Induction of Oxidative Stress **2011**, 229-244
- The effect of TCDD on the pineal gland of Han/Wistar rats. *Micron and Microscopica Acta*, **1992**, 23, 105-106