Raimo Kalevi Pohjanvirta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7637338/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aryl Hydrocarbon Receptor Regulates Distinct Dioxin-Dependent and Dioxin-Independent Gene Batteries. Molecular Pharmacology, 2006, 69, 140-153.	1.0	283
2	Point Mutation in Intron Sequence Causes Altered Carboxyl-Terminal Structure in the Aryl Hydrocarbon Receptor of the Most 2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin-Resistant Rat Strain. Molecular Pharmacology, 1998, 54, 86-93.	1.0	157
3	Risk for animal and human health related to the presence of dioxins and dioxinâ€like PCBs in feed and food. EFSA Journal, 2018, 16, e05333.	0.9	110
4	Tissue Distribution, Metabolism, and Excretion of ¹⁴ Câ€TCDD in a TCDDâ€Susceptible and a TCDDâ€Resistant Rat Strain ^a . Basic and Clinical Pharmacology and Toxicology, 1990, 66, 93-100.	0.0	106
5	Toxicological implications of polymorphisms in receptors for xenobiotic chemicals: The case of the aryl hydrocarbon receptor. Toxicology and Applied Pharmacology, 2005, 207, 43-51.	1.3	104
6	The AH Receptor and a Novel Gene Determine Acute Toxic Responses to TCDD: Segregation of the Resistant Alleles to Different Rat Lines. Toxicology and Applied Pharmacology, 1999, 155, 71-81.	1.3	97
7	Comparative Acute Lethality of 2,3,7,8â€Tetrachlorodibenzoâ€pâ€dioxin (TCDD), 1,2,3,7,8â€Pentachlorodibenzoâ€pâ€dioxin and 1,2,3,4,7,8â€Hexachlorodibenzoâ€pâ€dioxin in the Most TCDDâ€Susceptible and the Most TCDDâ€Resistant Rat Strain. Basic and Clinical Pharmacology and Toxicology, 1993, 73, 52-56.	0.0	95
8	Physicochemical Differences in the AH Receptors of the Most TCDD-Susceptible and the Most TCDD-Resistant Rat Strains. Toxicology and Applied Pharmacology, 1999, 155, 82-95.	1.3	95
9	Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Frontiers in Neuroendocrinology, 2010, 31, 452-478.	2.5	88
10	Dioxin-responsive AHRE-II gene battery: identification by phylogenetic footprinting. Biochemical and Biophysical Research Communications, 2004, 321, 707-715.	1.0	84
11	Hepatic Ah-receptor levels and the effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hepatic microsomal monooxygenase activities in a TCDD-susceptible and -resistant rat strain. Toxicology and Applied Pharmacology, 1988, 92, 131-140.	1.3	82
12	Target tissue morphology and serum biochemistry following 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in a TCDD-susceptible and a TCDD-resistant rat strain*1. Fundamental and Applied Toxicology, 1989, 12, 698-712.	1.9	82
13	Systematic evaluation of medium-throughput mRNA abundance platforms. Rna, 2013, 19, 51-62.	1.6	79
14	microRNAs in Adult Rodent Liver Are Refractory to Dioxin Treatment. Toxicological Sciences, 2007, 99, 470-487.	1.4	78
15	Han/Wistar Rats are Exceptionally Resistant to TCDD. I. Basic and Clinical Pharmacology and Toxicology, 1987, 60, 145-150.	0.0	71
16	Transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in liver: Comparison of rat and mouse. BMC Genomics, 2008, 9, 419.	1.2	70
17	TCDD activates Mdm2 and attenuates the p53 response to DNA damaging agents. Carcinogenesis, 2005, 26, 201-208.	1.3	66
18	Evaluation of various housekeeping genes for their applicability for normalization of mRNA expression in dioxin-treated rats. Chemico-Biological Interactions, 2006, 160, 134-149.	1.7	61

#	Article	IF	CITATIONS
19	Prenatal testosterone and luteinizing hormone levels in male rats exposed during pregnancy to 2,3,7,8-tetrachlorodibenzo-p-dioxin and diethylstilbestrol. Molecular and Cellular Endocrinology, 2001, 178, 169-179.	1.6	59
20	Exposure to 2,3,7,8-tetrachlorodibenzo-para-dioxin leads to defective dentin formation and pulpal perforation in rat incisor tooth. Toxicology, 1993, 81, 1-13.	2.0	56
21	Effects of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) on liver phosphoenolpyruvate carboxykinase (PEPCK) activity, glucose homeostasis and plasma amino acid concentrations in the most TCDD-susceptible and the most TCDD-resistant rat strains. Archives of Toxicology, 1999, 73, 323-336.	1.9	55
22	Differential Expression Profiling of the Hepatic Proteome in a Rat Model of Dioxin Resistance. Molecular and Cellular Proteomics, 2006, 5, 882-894.	2.5	55
23	Dioxin-Dependent and Dioxin-Independent Gene Batteries: Comparison of Liver and Kidney in AHR-Null Mice. Toxicological Sciences, 2009, 112, 245-256.	1.4	53
24	Primary structure and inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) of aryl hydrocarbon receptor repressor in a TCDD-sensitive and a TCDD-resistant rat strain. Biochemical and Biophysical Research Communications, 2004, 315, 123-131.	1.0	50
25	The AH Receptor of the Most Dioxin-Sensitive Species, Guinea Pig, Is Highly Homologous to the Human AH Receptor. Biochemical and Biophysical Research Communications, 2001, 285, 1121-1129.	1.0	46
26	TCDD-Induced Anorexia and Wasting Syndrome in Rats. Pharmacology Biochemistry and Behavior, 1999, 62, 735-742.	1.3	45
27	(TCDD) in a dioxin-resistant rat modelâ ⁺ †1â ⁺ †Portions of this work were presented at the 20th International Symposium on Halogenated Environmental Organic Pollutants & POPS, Monterey, California (August) Tj ETQq hydrocarbon receptor nuclear translocator protein: dNTP. 2â€2-deoxynucleoside 5â€2-triphosphate: DRF.	1 1 0,78431 2.0	14 rgBT /Ove
28	dioxin responsi. Biochemical Pharmacology, 2001, 62, 1565-1578. Aryl Hydrocarbon Receptor-Dependent Induction of Flavin-Containing Monooxygenase mRNAs in Mouse Liver. Drug Metabolism and Disposition, 2008, 36, 2499-2505.	1.7	45
29	Studies on the Role of Lipid Peroxidation in the Acute Toxicity of TCDD in Rats*. Basic and Clinical Pharmacology and Toxicology, 1990, 66, 399-408.	0.0	44
30	Aryl hydrocarbon receptor (AHR)-regulated transcriptomic changes in rats sensitive or resistant to major dioxin toxicities. BMC Genomics, 2010, 11, 263.	1.2	44
31	Biochemical effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds on the central nervous system. International Journal of Biochemistry and Cell Biology, 1995, 27, 443-455.	1.2	42
32	Arrest of Rat Molar Tooth Development by Lactational Exposure to 2,3,7,8-Tetrachlorodibenzo-p-dioxin. Toxicology and Applied Pharmacology, 2001, 173, 38-47.	1.3	42
33	Male and female mice show significant differences in hepatic transcriptomic response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. BMC Genomics, 2015, 16, 625.	1.2	41
34	Unexpected gender difference in sensitivity to the acute toxicity of dioxin in mice. Toxicology and Applied Pharmacology, 2012, 262, 167-176.	1.3	40
35	Lactational Exposure of Han/Wistar Rats to 2,3,7,8-Tetrachlorodibenzo- <i>p</i> -dioxin Interferes with Enamel Maturation and Retards Dentin Mineralization. Journal of Dental Research, 2004, 83, 139-144. -	2.5	39
36	Multigenerational and Transgenerational Effects of Dioxins. International Journal of Molecular Sciences, 2019, 20, 2947.	1.8	39

Raimo Kalevi Pohjanvirta

#	Article	IF	CITATIONS
37	Hepatic transcriptomic responses to TCDD in dioxin-sensitive and dioxin-resistant rats during the onset of toxicity. Toxicology and Applied Pharmacology, 2011, 251, 119-129.	1.3	38
38	Restructured Transactivation Domain in Hamster AH Receptor. Biochemical and Biophysical Research Communications, 2000, 273, 272-281.	1.0	37
39	Patterns of dioxin-altered mRNA expression in livers of dioxin-sensitive versus dioxin-resistant rats. Archives of Toxicology, 2008, 82, 809-830.	1.9	34
40	2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced ethoxyresorufin-O-deethylase (EROD) and aldehyde dehydrogenase (ALDH3) activities in the brain and liver. Biochemical Pharmacology, 1993, 46, 651-659.	2.0	33
41	TCDD dysregulation of 13 AHR-target genes in rat liver. Toxicology and Applied Pharmacology, 2014, 274, 445-454.	1.3	33
42	Comparison of acute toxicities of indolo[3,2-b]carbazole (ICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive rats. Food and Chemical Toxicology, 2002, 40, 1023-1032.	1.8	32
43	Persistent, Low-Dose 2,3,7,8-Tetrachlorodibenzo-p-dioxin Exposure: Effect on Aryl Hydrocarbon Receptor Expression in a Dioxin-Resistance Model. Toxicology and Applied Pharmacology, 2001, 175, 43-53.	1.3	31
44	The central nervous system may be involved in TCDD toxicity. Toxicology, 1989, 58, 167-174.	2.0	30
45	2,3,7,8-Tetrachlorodibenzo-p-dioxin-induced anorexia and wasting syndrome in rats: aggravation after ventromedial hypothalamic lesion. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1995, 293, 309-317.	0.8	30
46	Bone resorption by aryl hydrocarbon receptor-expressing osteoclasts is not disturbed by TCDD in short-term cultures. Life Sciences, 2005, 77, 1351-1366.	2.0	30
47	2,3,7,8-Tetrachlorodibenzo-p-dioxin enhances responsiveness to post-ingestive satiety signals. Toxicology, 1990, 63, 285-299.	2.0	29
48	Toxic equivalency factors do not predict the acute toxicities of dioxins in rats. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1995, 293, 341-353.	0.8	29
49	Developmental toxicity of dioxin to mouse embryonic teeth in vitro: arrest of tooth morphogenesis involves stimulation of apoptotic program in the dental epithelium. Toxicology and Applied Pharmacology, 2004, 194, 24-33.	1.3	29
50	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)-Induced Accumulation of Biliverdin and Hepatic Peliosis in Rats. Toxicological Sciences, 2003, 71, 112-123.	1.4	28
51	Aryl Hydrocarbon Receptor Splice Variants in the Dioxin-Resistant Rat: Tissue Expression and Transactivational Activity. Molecular Pharmacology, 2007, 72, 956-966.	1.0	27
52	Transgenic mouse lines expressing rat AH receptor variants — A new animal model for research on AH receptor function and dioxin toxicity mechanisms. Toxicology and Applied Pharmacology, 2009, 236, 166-182.	1.3	27
53	Effect of TCDD on mRNA expression of genes encoding bHLH/PAS proteins in rat hypothalamus. Toxicology, 2005, 208, 1-11.	2.0	26
54	Letter to the editor. Toxicology and Applied Pharmacology, 1990, 105, 508-509.	1.3	25

#	Article	IF	CITATIONS
55	Inter-strain heterogeneity in rat hepatic transcriptomic responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Toxicology and Applied Pharmacology, 2012, 260, 135-145.	1.3	25
56	Changes in Rat Brain Monoamines, Monoamine Metabolites and Histamine after a Single Administration of 2,3,7,8â€Tetraclilorodibenzoâ€ <i>p</i> â€dioxin (TCDD). Basic and Clinical Pharmacology and Toxicology, 1990, 67, 260-265.	0.0	24
57	TCDD resistance is inherited as an autosomal dominant trait in the rat. Toxicology Letters, 1990, 50, 49-56.	0.4	24
58	Mechanism by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) reduces circulating melatonin levels in the rat. Toxicology, 1996, 107, 85-97.	2.0	24
59	Identification of novel splice variants of ARNT and ARNT2 in the rat. Biochemical and Biophysical Research Communications, 2003, 303, 1095-1100.	1.0	23
60	Toxicological characterisation of two novel selective aryl hydrocarbon receptor modulators in Sprague-Dawley rats. Toxicology and Applied Pharmacology, 2017, 326, 54-65.	1.3	23
61	Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on tryptophan and glucose homeostasis in the most TCDD-susceptible and the most TCDD-resistant species, guinea pigs and hamsters. Archives of Toxicology, 1995, 69, 677-683.	1.9	22
62	Differences in acute toxicity syndromes of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin in rats. Toxicology, 2007, 235, 39-51.	2.0	22
63	Simultaneous exposure of rats to dioxin and carbon monoxide reduces the xenobiotic but not the hypoxic response. Biological Chemistry, 2004, 385, 291-294.	1.2	21
64	Genome-wide effects of acute progressive feed restriction in liver and white adipose tissue. Toxicology and Applied Pharmacology, 2008, 230, 41-56.	1.3	21
65	TCDD Reduces Serum Melatonin Levels in Longâ€Evans Rats. Basic and Clinical Pharmacology and Toxicology, 1989, 65, 239-240.	0.0	20
66	TCDD Decreases Rapidly and Persistently Serum Melatonin Concentration Without Morphologically Affecting the Pineal Gland in TCDDâ€Resistant Han/Wistar Rats. Basic and Clinical Pharmacology and Toxicology, 1991, 69, 427-432.	0.0	20
67	TCDD-induced hypophagia is not explained by nausea. Pharmacology Biochemistry and Behavior, 1994, 47, 273-282.	1.3	20
68	Effect of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on Hormones of Energy Balance in a TCDD-Sensitive and a TCDD-Resistant Rat Strain. International Journal of Molecular Sciences, 2014, 15, 13938-13966.	1.8	20
69	Compendium of TCDD-mediated transcriptomic response datasets in mammalian model systems. BMC Genomics, 2017, 18, 78.	1.2	19
70	Screening of Pharmacological Agents Given Peripherally with Respect to TCDDâ€Induced Wasting Syndrome in Longâ€Evans Rats *. Basic and Clinical Pharmacology and Toxicology, 1988, 63, 240-247.	0.0	18
71	Sex-related differences in murine hepatic transcriptional and proteomic responses to TCDD. Toxicology and Applied Pharmacology, 2015, 284, 188-196.	1.3	18
72	Effects of epidermal growth factor receptor deficiency and 2,3,7,8-tetrachlorodibenzo-p-dioxin on fetal development in mice. Toxicology Letters, 2004, 150, 285-291.	0.4	17

#	Article	IF	CITATIONS
73	Effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and leptin on hypothalamic mRNA expression of factors participating in food intake regulation in a TCDD-sensitive and a TCDD-resistant rat strain. Journal of Biochemical and Molecular Toxicology, 2005, 19, 139-148.	1.4	16
74	Acute Neurobehavioural Effects of 2,3,7,8â€Tetrachlorodibenzoâ€ <i>p</i> â€dioxin (TCDD) in Han/Wistar Rats. Basic and Clinical Pharmacology and Toxicology, 1992, 71, 284-288.	0.0	15
75	Changes in Food Intake and Food Selection in Rats After 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Exposure. Pharmacology Biochemistry and Behavior, 2000, 65, 381-387.	1.3	15
76	Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on heme oxygenase-1, biliverdin IXα reductase and δ-aminolevulinic acid synthetase 1 in rats with wild-type or variant AH receptor. Toxicology, 2008, 250, 132-142.	2.0	15
77	In vitro toxicity and in silico docking analysis of two novel selective AH-receptor modulators. Toxicology in Vitro, 2018, 52, 178-188.	1.1	15
78	Role of aryl hydrocarbon receptor (AHR) in overall retinoid metabolism: Response comparisons to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure between wild-type and AHR knockout mice. Reproductive Toxicology, 2021, 101, 33-49.	1.3	14
79	Expression of the mediators of dioxin toxicity, aryl hydrocarbon receptor (AHR) and the AHR nuclear translocator (ARNT), is developmentally regulated in mouse teeth. International Journal of Developmental Biology, 2002, 46, 295-300.	0.3	14
80	Bayesian modeling of reproducibility and robustness of RNA reverse transcription and quantitative real-time polymerase chain reaction. Analytical Biochemistry, 2012, 428, 81-91.	1.1	13
81	Effect of a Single Lethal Dose of TCDD on the Levels of Monoamines, their Metabolites and Tryptophan in Discrete Brain Nuclei and Peripheral Tissues of Longâ€Evans Rats. Basic and Clinical Pharmacology and Toxicology, 1993, 72, 279-285.	0.0	12
82	Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on plasma and tissue beta-endorphin-like immunoreactivity in the most TCDD-susceptible and the most TCDD-resistant rat strain. Life Sciences, 1993, 53, 1479-1487.	2.0	12
83	Characterization of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced brain serotonin metabolism in the rat. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1994, 270, 157-166.	0.8	12
84	Characterization of the Enhanced Responsiveness to Postingestive Satiety Signals in 2,3,7,8â€Tetrachlorodibenzoâ€pâ€dioxin (TCDD)â€Treated Han / Wistar Rats. Basic and Clinical Pharmacology and Toxicology, 1991, 69, 433-441.	0.0	11
85	TCDD decreases brain inositol concentrations in the rat. Toxicology Letters, 1994, 70, 363-372.	0.4	11
86	Body weight loss and changes in tryptophan homeostasis by chlorinated dibenzo- p -dioxin congeners in the most TCDD-susceptible and the most TCDD-resistant rat strain. Archives of Toxicology, 1998, 72, 769-776.	1.9	11
87	Cadmium intake of moose hunters in Finland from consumption of moose meat, liver and kidney. Food Additives and Contaminants, 2003, 20, 453-463.	2.0	11
88	Commercial processed food may have endocrine-disrupting potential: soy-based ingredients making the difference. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2013, 30, 1722-1727.	1.1	11
89	Do new hypotheses on the mechanism of action of dioxins help in risk evaluation?. Science of the Total Environment, 1991, 106, 21-31.	3.9	10
90	Immediate and highly sensitive aversion response to a novel food item linked to AH receptor stimulation. Toxicology Letters, 2011, 203, 252-257.	0.4	10

Raimo Kalevi Pohjanvirta

#	Article	IF	CITATIONS
91	Characterization of the 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-provoked strong and rapid aversion to unfamiliar foodstuffs in rats. Toxicology, 2011, 283, 140-150.	2.0	10
92	Dietary Exposure of Nigerians to Mutagens and Estrogen-Like Chemicals. International Journal of Environmental Research and Public Health, 2014, 11, 8347-8367.	1.2	10
93	Cross-species transcriptomic analysis elucidates constitutive aryl hydrocarbon receptor activity. BMC Genomics, 2014, 15, 1053.	1.2	10
94	Estrogenic activity of wastewater, bottled waters and tap water in Finland as assessed by a yeast bio-reporter assay. Scandinavian Journal of Public Health, 2015, 43, 770-775.	1.2	10
95	Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-ϕdioxin. Toxicology and Applied Pharmacology, 2015, 288, 223-231.	1.3	10
96	Dioxin-Induced Perturbations in Tryptophan Homeostasis in Laboratory Animals. Advances in Experimental Medicine and Biology, 1999, 467, 433-442.	0.8	10
97	The Loss of Glucoprivic Feeding is an Early‣tage Alteration in TCDDâ€Treated Han/Wistar Rats. Basic and Clinical Pharmacology and Toxicology, 1990, 67, 441-443.	0.0	9
98	Interference by 2,3,7,8-tetrachlorodibenzo-p-dioxin with cultured mouse submandibular gland branching morphogenesis involves reduced epidermal growth factor receptor signaling. Toxicology and Applied Pharmacology, 2006, 212, 200-211.	1.3	9
99	Transcriptional profiling of rat hypothalamus response to 2,3,7,8-tetrachlorodibenzo- Ï⊷dioxin. Toxicology, 2015, 328, 93-101.	2.0	9
100	Estrogenic Activities of Food Supplements and Beers as Assessed by a Yeast Bioreporter Assay. Journal of Dietary Supplements, 2018, 15, 665-672.	1.4	9
101	The Potent Phytoestrogen 8-Prenylnaringenin: A Friend or a Foe?. International Journal of Molecular Sciences, 2022, 23, 3168.	1.8	9
102	Effects of a single exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on macro- and microstructures of feeding and drinking in two differently TCDD-sensitive rat strains. Pharmacology Biochemistry and Behavior, 2011, 99, 487-499.	1.3	8
103	Validating reference genes within a mouse model system of 2,3,7,8-tetrachlorodibenzo- p -dioxin (TCDD) toxicity. Chemico-Biological Interactions, 2013, 205, 63-71.	1.7	8
104	Transgenerational epigenetic and transcriptomic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure in rat. Archives of Toxicology, 2020, 94, 1613-1624.	1.9	8
105	In vitro estrogenic, cytotoxic, and genotoxic profiles of the xenoestrogens 8-prenylnaringenine, genistein and tartrazine. Environmental Science and Pollution Research, 2021, 28, 27988-27997.	2.7	8
106	mRNA Levels in Control Rat Liver Display Strain-Specific, Hereditary, and AHR-Dependent Components. PLoS ONE, 2011, 6, e18337.	1.1	8
107	Significant interspecies differences in induction profiles of hepatic CYP enzymes by TCDD in bank and field voles. Environmental Toxicology and Chemistry, 2012, 31, 663-671.	2.2	7
108	Identification of Reference Proteins for Western Blot Analyses in Mouse Model Systems of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (TCDD) Toxicity. PLoS ONE, 2014, 9, e110730.	1.1	7

#	Article	IF	CITATIONS
109	Genotoxicity of processed food items and ready-to-eat snacks in Finland. Food Chemistry, 2014, 162, 206-214.	4.2	7
110	Aryl hydrocarbon receptor agonists trigger avoidance of novel food in rats. Physiology and Behavior, 2016, 167, 49-59.	1.0	7
111	2,3,7,8-Tetrachlorodibenzo-p-dioxin modifies alternative splicing in mouse liver. PLoS ONE, 2019, 14, e0219747.	1.1	7
112	Modulation of TCDD-induced wasting syndrome by portocaval anastomosis and vagotomy in Long-Evans and Han/Wistar rats. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1995, 292, 277-285.	0.8	6
113	Assessment by c-Fos Immunostaining of Changes in Brain Neural Activity Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Leptin in Rats*. Basic and Clinical Pharmacology and Toxicology, 2006, 98, 363-371.	1.2	6
114	Acute toxicity of perfluorodecanoic acid and cobalt protoporphyrin in a TCDD-sensitive and a TCDD-resistant rat strain. Chemosphere, 1992, 25, 1233-1238.	4.2	5
115	Postnatal development of resistance to short-term high-dose toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin in TCDD-resistant and -semiresistant rats. Toxicology and Applied Pharmacology, 2004, 196, 11-19.	1.3	5
116	2,3,7,8 Tetrachlorodibenzo-p-dioxin-induced RNA abundance changes identify Ackr3, Col18a1, Cyb5a and Glud1 as candidate mediators of toxicity. Archives of Toxicology, 2017, 91, 325-338.	1.9	5
117	AHR in energy balance regulation. Current Opinion in Toxicology, 2017, 2, 8-14.	2.6	5
118	Alterations in plasma tryptophan binding to albumin in 2,3,7,8-tetrachlorodibenzo-p-dioxin-treated Long-Evans rats. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1995, 293, 115-121.	0.8	4
119	Circadian differences between two rat strains in their feeding and drinking micro- and macrostructures. Biological Rhythm Research, 2011, 42, 385-405.	0.4	4
120	Transcriptomic Impact of IMA-08401, a Novel AHR Agonist Resembling Laquinimod, on Rat Liver. International Journal of Molecular Sciences, 2019, 20, 1370.	1.8	4
121	Novel Aspects of Toxicity Mechanisms of Dioxins and Related Compounds. International Journal of Molecular Sciences, 2020, 21, 2342.	1.8	4
122	Differences in binding of epidermal growth factor to liver membranes of TCDD-resistant and TCDD-sensitive rats after a single dose of TCDD. Environmental Toxicology and Pharmacology, 1996, 1, 109-116.	2.0	3
123	Comparative toxicoproteogenomics of mouse and rat liver identifies TCDD-resistance genes. Archives of Toxicology, 2019, 93, 2961-2978.	1.9	3
124	Aryl hydrocarbon receptor is indispensable for β-naphthoflavone-induced novel food avoidance and may be involved in LiCl-triggered conditioned taste aversion in rats. Physiology and Behavior, 2019, 204, 58-64.	1.0	3
125	Polycyclic Aromatic Hydrocarbons (PAHs) in Select Commercially Processed Meat and Fish Products in Finland and the Mutagenic Potential of These Food Items. Polycyclic Aromatic Compounds, 2020, 40, 927-933.	1.4	2
126	Target Tissue Morphology and Serum Biochemistry following 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) Exposure in a TCDD-Susceptible and a TCDD-Resistant Rat Strain. Toxicological Sciences, 1989, 12, 698-712.	1.4	1

#	Article	IF	CITATIONS
127	The structure of the AH receptor transactivation domain as a determinant of dioxin sensitivity. Toxicology Letters, 2009, 189, S54.	0.4	1
128	Effects of a high-fat diet and global aryl hydrocarbon receptor deficiency on energy balance and liver retinoid status in male Sprague-Dawley rats. Journal of Nutritional Biochemistry, 2021, 95, 108762.	1.9	1
129	The effect of TCDD on the pineal gland of Han/Wistar rats. Micron and Microscopica Acta, 1992, 23, 105-106.	0.2	0
130	2,3,7,8â€Tetrachlorodibenzoâ€ <i>p</i> â€dioxin (<scp>TCDD</scp>) Increases Bilirubin Formation but Hampers Quantitative Hepatic Conversion of Biliverdin to Bilirubin in Rats with Wildâ€Type <scp>AH</scp> Receptor. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 497-509.	1.2	0
131	Toxicity of two novel selective AHR modulators in rats. Toxicology Letters, 2014, 229, S72.	0.4	0
132	Aryl hydrocarbon receptor is linked with novel food avoidance behaviour in Sprague-Dawley rats. Toxicology Letters, 2017, 280, S239.	0.4	0