
Juan A Ascacio-Valdes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/763688/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sorghum (<i>Sorghum bicolor</i> L.) as a potential source of bioactive substances and their biological properties. Critical Reviews in Food Science and Nutrition, 2022, 62, 2269-2280.	5.4	42
2	The secondary metabolites from Beauveria bassiana PQ2 inhibit the growth and spore germination of Gibberella moniliformis LIA. Brazilian Journal of Microbiology, 2022, 53, 143-152.	0.8	3
3	Co-microencapsulation: a promising multi-approach technique for enhancement of functional properties. Bioengineered, 2022, 13, 5168-5189.	1.4	8
4	Recovery of Bioactive Ellagitannins by Ultrasound/Microwave-Assisted Extraction from Mexican Rambutan Peel (Nephelium lappaceum L.). Molecules, 2022, 27, 1592.	1.7	12
5	Kinetic Study of Fungal Growth of Several Tanninolytic Strains Using Coffee Pulp Procyanidins. Fermentation, 2022, 8, 17.	1.4	3
6	Polyphenolic extract from <i>Punica granatum</i> peel causes cytoskeleton-related damage on <i>Giardia lamblia</i> trophozoites <i>in vitro</i> . PeerJ, 2022, 10, e13350.	0.9	3
7	RECOVERY OF ELLAGIC ACID FROM MEXICAN RAMBUTAN PEEL BY SOLID-STATE FERMENTATION-ASSISTED EXTRACTION Food and Bioproducts Processing, 2022, , .	1.8	9
8	Ultrasoundâ€microwaveâ€assisted extraction of polyphenolic compounds from Mexican "Ataulfo―mango peels: Antioxidant potential and identification by HPLC/ESI/MS. Phytochemical Analysis, 2021, 32, 495-502.	1.2	22
9	Application of Lactic Acid Bacteria in Fermentation Processes to Obtain Tannases Using Agro-Industrial Wastes. Fermentation, 2021, 7, 48.	1.4	10
10	Antibacterial Potential by Rupture Membrane and Antioxidant Capacity of Purified Phenolic Fractions of Persea americana Leaf Extract. Antibiotics, 2021, 10, 508.	1.5	10
11	Nutritional Characterization of the Functional and Antioxidant Activity of Cactus Flowers from Hidalgo, Mexico. Applied Sciences (Switzerland), 2021, 11, 5965.	1.3	6
12	Phytochemical Characterization of Phoradendron bollanum and Viscum album subs. austriacum as Mexican Mistletoe Plants with Antimicrobial Activity. Plants, 2021, 10, 1299.	1.6	13
13	Characterization of a Biofilm Bioreactor Designed for the Single-Step Production of Aerial Conidia and Oosporein by Beauveria bassiana PQ2. Journal of Fungi (Basel, Switzerland), 2021, 7, 582.	1.5	3
14	Antioxidant and anti-staphylococcal activity of polyphenolic-rich extracts from Ataulfo mango seed. LWT - Food Science and Technology, 2021, 148, 111653.	2.5	12
15	Green Bean, Pea and Mesquite Whole Pod Flours Nutritional and Functional Properties and Their Effect on Sourdough Bread. Foods, 2021, 10, 2227.	1.9	9
16	Influence of culture conditions on ellagitannase expression and fungal ellagitannin degradation. Bioresource Technology, 2021, 337, 125462.	4.8	5
17	Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chemistry Molecular Sciences, 2021, 3, 100047.	0.9	54
18	Use of wastes from the tea and coffee industries for the production of cellulases using fungi isolated from the Western Ghats of India. Systems Microbiology and Biomanufacturing, 2021, 1, 33-41.	1.5	9

#	Article	IF	CITATIONS
19	Effect of ultrasound on the extraction of ellagic acid and hydrolysis of ellagitannins from pomegranate husk. Environmental Technology and Innovation, 2021, 24, 102063.	3.0	16
20	Purshia plicata Triggers and Regulates Proteins Related to Apoptosis in HeLa Cancer Cells. Plants, 2021, 10, 2559.	1.6	3
21	Early Optimization Stages of Agave lechuguilla Bagasse Processing toward Biorefinement: Drying Procedure and Enzymatic Hydrolysis for Flavonoid Extraction. Molecules, 2021, 26, 7292.	1.7	5
22	Polifenoles de diferentes fuentes vegetales y su efecto in vitro contra patógenos del garbanzo. Revista Mexicana De Ciencias Agricolas, 2021, 12, 1415-1427.	0.0	0
23	Procyanidins: From Agro-Industrial Waste to Food as Bioactive Molecules. Foods, 2021, 10, 3152.	1.9	26
24	Screening and characterization of medicinal plants extracts with bactericidal activity against <i>Streptococcus mutans</i> . Natural Product Research, 2020, 34, 2672-2676.	1.0	7
25	Ellagic acid production using polyphenols from orange peel waste by submerged fermentation. Electronic Journal of Biotechnology, 2020, 43, 1-7.	1.2	36
26	Solid-State Fermentation with Aspergillus niger GH1 to Enhance Polyphenolic Content and Antioxidative Activity of Castilla Rose (Purshia plicata). Plants, 2020, 9, 1518.	1.6	8
27	Valorization of Flourensia cernua DC as source of antioxidants and antifungal bioactives. Industrial Crops and Products, 2020, 152, 112422.	2.5	7
28	Preliminary Testing of Ultrasound/Microwave-Assisted Extraction (U/M-AE) for the Isolation of Geraniin from Nephelium lappaceum L. (Mexican Variety) Peel. Processes, 2020, 8, 572.	1.3	12
29	Use of coffee pulp and sorghum mixtures in the production of n-demethylases by solid-state fermentation. Bioresource Technology, 2020, 305, 123112.	4.8	15
30	Location and tissue effects on phytochemical composition and in vitro antioxidant activity of Moringa oleifera. Industrial Crops and Products, 2020, 151, 112439.	2.5	12
31	Phenolic compounds of Tagetes lucida Cav. with antibacterial effect due to membrane damage. Boletin Latinoamericano Y Del Caribe De Plantas Medicinales Y Aromaticas, 2020, 19, 580-590.	0.2	3
32	Enzymatic Biotransformation of Pomegranate Ellagitannins: Initial Approach to Reaction Conditions. Iranian Journal of Biotechnology, 2020, 18, e2305.	0.3	0
33	Ellagic Acid Recovery by Solid State Fermentation of Pomegranate Wastes by Aspergillus niger and Saccharomyces cerevisiae: A Comparison. Molecules, 2019, 24, 3689.	1.7	29
34	Emerging strategies for the development of food industries. Bioengineered, 2019, 10, 522-537.	1.4	20
35	Solid-state fermentation with Aspergillus niger to enhance the phenolic contents and antioxidative activity of Mexican mango seed: A promising source of natural antioxidants. LWT - Food Science and Technology, 2019, 112, 108236.	2.5	58
			-

Tuba, a Fermented and Refreshing Beverage From Coconut Palm Sap. , 2019, , 163-184.

6

#	Article	IF	CITATIONS
37	Effect of ultrasound treatment on the extraction of antioxidants from Ardisia compressa Kunth fruits and identification of phytochemicals by HPLC-ESI-MS. Heliyon, 2019, 5, e03058.	1.4	14
38	Hydrolases of Halophilic Origin With Importance for the Food Industry. , 2019, , 197-219.		10
39	Improved reductive transformation of iopromide by magnetite containing reduced graphene oxide nanosacks as electron shuttles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 566, 188-195.	2.3	4
40	Rambutan(Nephelium lappaceum L.):Nutritional and functional properties. Trends in Food Science and Technology, 2019, 85, 201-210.	7.8	48
41	Solid state fermentation of pomegranate husk: Recovery of ellagic acid by SEC and identification of ellagitannins by HPLC/ESI/MS. Food Bioscience, 2018, 22, 99-104.	2.0	24
42	Animal-based organic nutrition induces comparable fruit quality to that of inorganic fertigation in soilless-grown grape tomato. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 515-523.	0.3	2
43	On-line monitoring of Aspergillus niger GH1 growth in a bioprocess for the production of ellagic acid and ellagitannase by solid-state fermentation. Bioresource Technology, 2018, 247, 412-418.	4.8	9
44	Animal-based organic nutrition can substitute inorganic fertigation in soilless-grown grape tomato. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2018, 68, 77-85.	0.3	6
45	Tannin Degrading Enzymes: Catalytic Properties and Technological Perspectives. , 2018, , 125-141.		0
46	Novel application of magnetic nano-carbon composite as redox mediator in the reductive biodegradation of iopromide in anaerobic continuous systems. Applied Microbiology and Biotechnology, 2018, 102, 8951-8961.	1.7	15
47	UPLC-ESI-QTOF-MS2-Based Identification and Antioxidant Activity Assessment of Phenolic Compounds from Red Corn Cob (Zea mays L.). Molecules, 2018, 23, 1425.	1.7	22
48	Ultrasound-assisted extraction of antioxidant polyphenolic compounds from Nephelium lappaceum L. (Mexican variety) husk. Asian Pacific Journal of Tropical Medicine, 2018, 11, 676.	0.4	22
49	Rhizopus oryzae – Ancient microbial resource with importance in modern food industry. International Journal of Food Microbiology, 2017, 257, 110-127.	2.1	77
50	Impact of extraction techniques on antioxidant capacities and phytochemical composition of polyphenol-rich extracts. Food Chemistry, 2017, 237, 1139-1148.	4.2	111
51	Estimation of the Mean Degree of Polymerization of Condensed Tannins from the Kernel and Shell of Carya illinoinensis by HPLC/MS and Spectrophotometric Methods. Food Analytical Methods, 2017, 10, 3023-3031.	1.3	10
52	Effect of growth conditions on \hat{l}^2 -glucosidase production using Flourensia cernua leaves in a solid-state fungal bioprocess. 3 Biotech, 2017, 7, 355.	1.1	3
53	Solid state fermentation of fig (Ficus carica L.) by-products using fungi to obtain phenolic compounds with antioxidant activity and qualitative evaluation of phenolics obtained. Process Biochemistry, 2017, 62, 16-23.	1.8	54
54	Pentagalloylglucose (PGG): A valuable phenolic compound with functional properties. Journal of Functional Foods, 2017, 37, 176-189.	1.6	83

#	Article	IF	CITATIONS
55	Solid bioprocess of tarbush (Flourensia cernua) leaves for β-glucosidase production by Aspergillus niger: initial approach to fiber–glycoside interaction for enzyme induction. 3 Biotech, 2017, 7, 271.	1.1	1
56	Polyphenolic content, inÂvitro antioxidant activity and chemical composition of extract from Nephelium lappaceum L. (Mexican rambutan) husk. Asian Pacific Journal of Tropical Medicine, 2017, 10, 1201-1205.	0.4	51
57	Tailoring partially reduced graphene oxide as redox mediator for enhanced biotransformation of iopromide under methanogenic and sulfate-reducing conditions. Bioresource Technology, 2017, 223, 269-276.	4.8	35
58	Extraction of Bioactive Phenolic Compounds by Alternative Technologies. , 2017, , 229-252.		9
59	Enhanced Reduction of p-Nitrophenol by a Methanogenic Consortium Promoted by Metallic Nanoparticles. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	6
60	Immobilization of biogenic Pd(0) in anaerobic granular sludge for the biotransformation of recalcitrant halogenated pollutants in UASB reactors. Applied Microbiology and Biotechnology, 2016, 100, 1427-1436.	1.7	14
61	The complete biodegradation pathway of ellagitannins by <i>Aspergillus niger</i> in solidâ€state fermentation. Journal of Basic Microbiology, 2016, 56, 329-336.	1.8	61
62	Immobilization of metal–humic acid complexes in anaerobic granular sludge for their application as solid-phase redox mediators in the biotransformation of iopromide in UASB reactors. Bioresource Technology, 2016, 207, 39-45.	4.8	41
63	Effect of different polyphenol sources on the efficiency of ellagic acid release by Aspergillus niger. Revista Argentina De Microbiologia, 2016, 48, 71-77.	0.4	9
64	Role of the intrinsic properties of partially reduced graphene oxides on the chemical transformation of iopromide. Carbon, 2016, 99, 456-465.	5.4	32
65	Assessment of pomegranate wine lees as a valuable source for the recovery of (poly)phenolic compounds. Food Chemistry, 2014, 145, 327-334.	4.2	40
66	Continuous production of ellagic acid in a packed-bed reactor. Process Biochemistry, 2014, 49, 1595-1600.	1.8	17
67	Fungal biodegradation of pomegranate ellagitannins. Journal of Basic Microbiology, 2014, 54, 28-34.	1.8	46
68	Antifungal ellagitannin isolated from Euphorbia antisyphilitica Zucc. Asian Pacific Journal of Tropical Biomedicine, 2013, 3, 41-46.	0.5	24
69	Optimization of ellagic acid accumulation by Aspergillus niger GH1 in solid state culture using pomegranate shell powder as a support. Process Biochemistry, 2012, 47, 2199-2203.	1.8	33
70	Euphorbia antisyphilitica residues as a new source of ellagic acid. Chemical Papers, 2010, 64, .	1.0	28
71	Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Frontiers in Sustainable Food Systems, 0, 2, .	1.8	206