
Jie Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7636690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	On the Temporal Relationship between Coronal Mass Ejections and Flares. Astrophysical Journal, 2001, 559, 452-462.	1.6	589
2	Solar and interplanetary sources of major geomagnetic storms (<i>Dst</i> ≤î^100 nT) during 1996–2005. Journal of Geophysical Research, 2007, 112, .	3.3	485
3	Observation of an evolving magnetic flux rope before and during a solar eruption. Nature Communications, 2012, 3, 747.	5.8	247
4	DIFFERENTIAL EMISSION MEASURE ANALYSIS OF MULTIPLE STRUCTURAL COMPONENTS OF CORONAL MASS EJECTIONS IN THE INNER CORONA. Astrophysical Journal, 2012, 761, 62.	1.6	229
5	A Study of the Kinematic Evolution of Coronal Mass Ejections. Astrophysical Journal, 2004, 604, 420-432.	1.6	224
6	A Statistical Study of Main and Residual Accelerations of Coronal Mass Ejections. Astrophysical Journal, 2006, 649, 1100-1109.	1.6	218
7	Identification of Solar Sources of Major Geomagnetic Storms between 1996 and 2000. Astrophysical Journal, 2003, 582, 520-533.	1.6	202
8	OBSERVING FLUX ROPE FORMATION DURING THE IMPULSIVE PHASE OF A SOLAR ERUPTION. Astrophysical Journal Letters, 2011, 732, L25.	3.0	186
9	Major geomagnetic storms (Dst≤^`100 nT) generated by corotating interaction regions. Journal of Geophysical Research, 2006, 111, .	3.3	159
10	A Comparative Study between Eruptive Xâ€Class Flares Associated with Coronal Mass Ejections and Confined Xâ€Class Flares. Astrophysical Journal, 2007, 665, 1428-1438.	1.6	155
11	Automatic Detection and Tracking of Coronal Mass Ejections in Coronagraph Time Series. Solar Physics, 2008, 248, 485-499.	1.0	116
12	THE DRIVER OF CORONAL MASS EJECTIONS IN THE LOW CORONA: A FLUX ROPE. Astrophysical Journal, 2013, 763, 43.	1.6	115
13	FORMATION OF A DOUBLE-DECKER MAGNETIC FLUX ROPE IN THE SIGMOIDAL SOLAR ACTIVE REGION 11520. Astrophysical Journal, 2014, 789, 93.	1.6	111
14	PARTIAL TORUS INSTABILITY. Astrophysical Journal, 2010, 718, 433-440.	1.6	110
15	The Chinese Spectral Radioheliograph—CSRH. Earth, Moon and Planets, 2009, 104, 97-100.	0.3	107
16	INVESTIGATION OF THE FORMATION AND SEPARATION OF AN EXTREME-ULTRAVIOLET WAVE FROM THE EXPANSION OF A CORONAL MASS EJECTION. Astrophysical Journal Letters, 2012, 745, L5.	3.0	100
17	A COMPARATIVE STUDY OF CONFINED AND ERUPTIVE FLARES IN NOAA AR 10720. Astrophysical Journal, 2011, 732, 87.	1.6	86
18	Decoding the Pre-Eruptive Magnetic Field Configurations of Coronal Mass Ejections. Space Science Reviews, 2020, 216, 1.	3.7	77

#	Article	IF	CITATIONS
19	THE SOLAR ENERGETIC PARTICLE EVENT ON 2013 APRIL 11: AN INVESTIGATION OF ITS SOLAR ORIGIN AND LONGITUDINAL SPREAD. Astrophysical Journal, 2014, 797, 8.	1.6	76
20	INVESTIGATING TWO SUCCESSIVE FLUX ROPE ERUPTIONS IN A SOLAR ACTIVE REGION. Astrophysical Journal Letters, 2013, 769, L25.	3.0	75
21	NEW INSIGHTS INTO THE PHYSICAL NATURE OF CORONAL MASS EJECTIONS AND ASSOCIATED SHOCK WAVES WITHIN THE FRAMEWORK OF THE THREE-DIMENSIONAL STRUCTURE. Astrophysical Journal, 2014, 794, 148.	1.6	75
22	TRACKING THE EVOLUTION OF A COHERENT MAGNETIC FLUX ROPE CONTINUOUSLY FROM THE INNER TO THE OUTER CORONA. Astrophysical Journal, 2014, 780, 28.	1.6	74
23	ON THE RELATIONSHIP BETWEEN A HOT-CHANNEL-LIKE SOLAR MAGNETIC FLUX ROPE AND ITS EMBEDDED PROMINENCE. Astrophysical Journal Letters, 2014, 789, L35.	3.0	74
24	Evolution of the 12 July 2012 CME from the Sun to the Earth: Dataâ€constrained threeâ€dimensional MHD simulations. Journal of Geophysical Research: Space Physics, 2014, 119, 7128-7141.	0.8	70
25	STEREOSCOPIC STUDY OF THE KINEMATIC EVOLUTION OF A CORONAL MASS EJECTION AND ITS DRIVEN SHOCK FROM THE SUN TO THE EARTH AND THE PREDICTION OF THEIR ARRIVAL TIMES. Astrophysical Journal, 2014, 792, 49.	1.6	60
26	Eruption of a multi-flux-rope system in solar active region 12673 leading to the two largest flares in Solar Cycle 24. Astronomy and Astrophysics, 2018, 619, A100.	2.1	59
27	Initiation and Early Kinematic Evolution of Solar Eruptions. Astrophysical Journal, 2020, 894, 85.	1.6	59
28	DIRECT OBSERVATIONS OF MAGNETIC FLUX ROPE FORMATION DURING A SOLAR CORONAL MASS EJECTION. Astrophysical Journal Letters, 2014, 792, L40.	3.0	56
29	Earth-affecting solar transients: a review of progresses in solar cycle 24. Progress in Earth and Planetary Science, 2021, 8, 56.	1.1	56
30	Impact of Major Coronal Mass Ejections on Geospace during 2005 September 7–13. Astrophysical Journal, 2006, 646, 625-633.	1.6	51
31	Extreme ultraviolet imaging of three-dimensional magnetic reconnection in a solar eruption. Nature Communications, 2015, 6, 7598.	5.8	49
32	Eruptions of two flux ropes observed by SDO and STEREO. Astronomy and Astrophysics, 2013, 552, L11.	2.1	49
33	Energy transfer during intense geomagnetic storms driven by interplanetary coronal mass ejections and their sheath regions. Journal of Geophysical Research, 2011, 116, .	3.3	48
34	Two Successive Coronal Mass Ejections Driven by the Kink and Drainage Instabilities of an Eruptive Prominence. Astrophysical Journal, 2006, 651, 1238-1244.	1.6	47
35	TEMPERATURE EVOLUTION OF A MAGNETIC FLUX ROPE IN A FAILED SOLAR ERUPTION. Astrophysical Journal, 2014, 784, 48.	1.6	47
36	The Origin of Major Solar Activity: Collisional Shearing between Nonconjugated Polarities of Multiple Bipoles Emerging within Active Regions. Astrophysical Journal, 2019, 871, 67.	1.6	47

Jie Zhang

#	Article	IF	CITATIONS
37	PREDICTING THE ARRIVAL TIME OF CORONAL MASS EJECTIONS WITH THE GRADUATED CYLINDRICAL SHELL AND DRAG FORCE MODEL. Astrophysical Journal, 2015, 806, 271.	1.6	46
38	STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS OBTAINED FROM AN AUTOMATIC DETECTION SYSTEM AND THE COMPUTATIONAL BIASES. Astrophysical Journal, 2010, 723, 1006-1018.	1.6	45
39	ARE HALO-LIKE SOLAR CORONAL MASS EJECTIONS MERELY A MATTER OF GEOMETRIC PROJECTION EFFECTS?. Astrophysical Journal Letters, 2015, 799, L29.	3.0	44
40	CORONAL MASS EJECTION PROPAGATION AND EXPANSION IN THREE-DIMENSIONAL SPACE IN THE HELIOSPHERE BASED ON <i>STEREO</i> /SECCHI OBSERVATIONS. Astrophysical Journal Letters, 2010, 717, L159-L163.	3.0	40
41	Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory. Journal of Geophysical Research: Space Physics, 2016, 121, 7470-7487.	0.8	40
42	OSCILLATION OF CURRENT SHEETS IN THE WAKE OF A FLUX ROPE ERUPTION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY. Astrophysical Journal Letters, 2016, 829, L33.	3.0	40
43	ON THE ORIGIN OF THE EXTREME-ULTRAVIOLET LATE PHASE OF SOLAR FLARES. Astrophysical Journal, 2013, 768, 150.	1.6	39
44	Three-dimensional MHD Simulation of Solar Wind Using a New Boundary Treatment: Comparison with In Situ Data at Earth. Astrophysical Journal, 2018, 866, 18.	1.6	38
45	PREDICTING CME EJECTA AND SHEATH FRONT ARRIVAL AT L1 WITH A DATA-CONSTRAINED PHYSICAL MODEL. Astrophysical Journal, 2015, 812, 144.	1.6	37
46	On the propagation of a geoeffective coronal mass ejection during 15–17 March 2015. Journal of Geophysical Research: Space Physics, 2016, 121, 7423-7434.	0.8	36
47	A Study of the Earth-Affecting CMEs of Solar Cycle 24. Solar Physics, 2017, 292, 1.	1.0	36
48	Why Do Torus-unstable Solar Filaments Experience Failed Eruptions?. Astrophysical Journal Letters, 2019, 877, L28.	3.0	35
49	Correction to "Solar and interplanetary sources of major geomagnetic storms (<i>Dst</i> ≤ି'100 nT) during 1996–2005― Journal of Geophysical Research, 2007, 112, .	3.3	32
50	INITIATION AND ERUPTION PROCESS OF MAGNETIC FLUX ROPE FROM SOLAR ACTIVE REGION NOAA 11719 TO EARTH-DIRECTED CME. Astrophysical Journal, 2014, 797, 80.	1.6	32
51	EVIDENCE OF THE SOLAR EUV HOT CHANNEL AS A MAGNETIC FLUX ROPE FROM REMOTE-SENSING AND IN SITU OBSERVATIONS. Astrophysical Journal Letters, 2015, 808, L15.	3.0	32
52	OBSERVATIONS OF MAGNETIC FLUX-ROPE OSCILLATION DURING THE PRECURSOR PHASE OF A SOLAR ERUPTION. Astrophysical Journal Letters, 2016, 823, L19.	3.0	32
53	Flux rope proxies and fan-spine structures in active region NOAA 11897. Astronomy and Astrophysics, 2016, 592, A138.	2.1	32
54	A STATISTICAL STUDY OF THE AVERAGE IRON CHARGE STATE DISTRIBUTIONS INSIDE MAGNETIC CLOUDS FOR SOLAR CYCLE 23. Astrophysical Journal, Supplement Series, 2016, 224, 27.	3.0	32

#	Article	IF	CITATIONS
55	WISPR Imaging of a Pristine CME. Astrophysical Journal, Supplement Series, 2020, 246, 25.	3.0	31
56	An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations. Journal of Geophysical Research, 2009, 114, .	3.3	30
57	RE-FLARING OF A POST-FLARE LOOP SYSTEM DRIVEN BY FLUX ROPE EMERGENCE AND TWISTING. Astrophysical Journal Letters, 2010, 716, L68-L73.	3.0	29
58	RECONSTRUCTING THE SUBSURFACE THREE-DIMENSIONAL MAGNETIC STRUCTURE OF A SOLAR ACTIVE REGION USING <i>SDO</i> /HMI OBSERVATIONS. Astrophysical Journal Letters, 2013, 764, L3.	3.0	28
59	A STUDY OF FAST FLARELESS CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 773, 129.	1.6	28
60	The Origin of Solar Filament Plasma Inferred from In Situ Observations of Elemental Abundances. Astrophysical Journal Letters, 2017, 836, L11.	3.0	28
61	Sizes and relative geoeffectiveness of interplanetary coronal mass ejections and the preceding shock sheaths during intense storms in 1996–2005. Geophysical Research Letters, 2008, 35, .	1.5	27
62	A Comparative Study of Coronal Mass Ejections with and Without Magnetic Cloud Structure near the Earth: Are All Interplanetary CMEs Flux Ropes?. Solar Physics, 2013, 284, 89-104.	1.0	27
63	Statistical properties and geoefficiency of interplanetary coronal mass ejections and their sheaths during intense geomagnetic storms. Journal of Geophysical Research, 2010, 115, .	3.3	24
64	GLOBAL CORONAL SEISMOLOGY IN THE EXTENDED SOLAR CORONA THROUGH FAST MAGNETOSONIC WAVES OBSERVED BY <i>STEREO</i> SECCHI COR1. Astrophysical Journal, 2013, 776, 55.	1.6	24
65	ACCELERATION PHASES OF A SOLAR FILAMENT DURING ITS ERUPTION. Astrophysical Journal Letters, 2015, 804, L38.	3.0	23
66	THERMODYNAMIC SPECTRUM OF SOLAR FLARES BASED ON SDO/EVE OBSERVATIONS: TECHNIQUES AND FIRST RESULTS. Astrophysical Journal, Supplement Series, 2016, 223, 4.	3.0	23
67	EXTREMELY LARGE EUV LATE PHASE OF SOLAR FLARES. Astrophysical Journal, 2015, 802, 35.	1.6	22
68	Toward Understanding the 3D Structure and Evolution of Magnetic Flux Ropes in an Extremely Long Duration Eruptive Flare. Astrophysical Journal, 2017, 851, 133.	1.6	22
69	Multipleâ€step geomagnetic storms and their interplanetary drivers. Geophysical Research Letters, 2008, 35, .	1.5	21
70	Interplanetary origin of multipleâ€dip geomagnetic storms. Journal of Geophysical Research, 2008, 113, .	3.3	21
71	Mass loss via solar wind and coronal mass ejections during solar cycles 23 and 24. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4671-4685.	1.6	21
72	Flux rope proxies during 2013 detected by the Solar Dynamics Observatory. Astronomy and Astrophysics, 2015, 580, A2.	2.1	20

#	Article	IF	CITATIONS
73	A Study of a Compound Solar Eruption with Two Consecutive Erupting Magnetic Structures. Astrophysical Journal, 2018, 860, 35.	1.6	19
74	On the Nature of the Bright Core of Solar Coronal Mass Ejections. Astrophysical Journal, 2019, 883, 43.	1.6	19
75	STEREOSCOPIC DETERMINATION OF HEIGHTS OF EXTREME ULTRAVIOLET BRIGHT POINTS USING DATA TAKEN BY SECCHI/EUVI ABOARD <i>STEREO</i> . Astrophysical Journal, 2010, 714, 130-137.	1.6	18
76	On the relationship between thermosphere density and solar wind parameters during intense geomagnetic storms. Journal of Geophysical Research, 2010, 115, .	3.3	17
77	The Three-part Structure of a Filament-unrelated Solar Coronal Mass Ejection. Astrophysical Journal, 2017, 848, 21.	1.6	17
78	When do solar erupting hot magnetic flux ropes form?. Astronomy and Astrophysics, 2020, 642, A109.	2.1	17
79	External reconnection and resultant reconfiguration of overlying magnetic fields during sympathetic eruptions of two filaments. Astronomy and Astrophysics, 2020, 640, A101.	2.1	17
80	THREE-DIMENSIONAL STRUCTURE AND EVOLUTION OF EXTREME-ULTRAVIOLET BRIGHT POINTS OBSERVED BY <i>STEREO</i> /SECCHI/EUVI. Astrophysical Journal, 2012, 757, 167.	1.6	15
81	APPEARANCES AND STATISTICS OF CORONAL CAVITIES DURING THE ASCENDING PHASE OF SOLAR CYCLE 24. Astrophysical Journal, 2015, 810, 123.	1.6	15
82	Observational Study of an Earth-affecting Problematic ICME from STEREO. Astrophysical Journal, 2018, 863, 108.	1.6	15
83	The Structure of Solar Coronal Mass Ejections in the Extreme-ultraviolet Passbands. Astrophysical Journal, 2019, 887, 124.	1.6	15
84	Interplanetary drivers of ionospheric prompt penetration electric fields. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 130-136.	0.6	14
85	The Reversal of a Solar Prominence Rotation about Its Ascending Direction during a Failed Eruption. Astrophysical Journal Letters, 2018, 864, L37.	3.0	14
86	Recurring Homologous Solar Eruptions in NOAA AR 11429. Astrophysical Journal, 2020, 901, 40.	1.6	14
87	STUDY OF THE 3D GEOMETRIC STRUCTURE AND TEMPERATURE OF A CORONAL CAVITY USING THE LIMB SYNOPTIC MAP METHOD. Astrophysical Journal, 2015, 810, 124.	1.6	12
88	THE FIRST TASTE OF A HOT CHANNEL IN INTERPLANETARY SPACE. Astrophysical Journal, 2015, 803, 96.	1.6	12
89	Properties of a Small-scale Short-duration Solar Eruption with a Driven Shock. Astrophysical Journal, 2018, 856, 24.	1.6	12
90	Modeling solar energetic particle transport in 3D background solar wind: Influences of the compression regions. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182, 155-164.	0.6	12

Jie Zhang

#	Article	IF	CITATIONS
91	Eruption of Solar Magnetic Flux Ropes Caused by Flux Feeding. Astrophysical Journal Letters, 2020, 898, L12.	3.0	12
92	MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS. Astrophysical Journal, 2015, 815, 46.	[•] 1.6	11
93	A Comparison of the CIR―and CMEâ€Induced Geomagnetic Activity Effects on Mesosphere and Lower Thermospheric Temperature. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA029029.	0.8	11
94	A Study of External Magnetic Reconnection that Triggers a Solar Eruption. Astrophysical Journal Letters, 2017, 851, L1.	3.0	10
95	Activity Complexes and a Prominent Poleward Surge during Solar Cycle 24. Astrophysical Journal, 2020, 904, 62.	1.6	10
96	Modeling the Observed Distortion of Multiple (Ghost) CME Fronts in STEREO Heliospheric Imagers. Astrophysical Journal Letters, 2021, 917, L16.	3.0	9
97	Using the "Ghost Front―to Predict the Arrival Time and Speed of CMEs at Venus and Earth. Astrophysical Journal, 2020, 899, 143.	1.6	9
98	Do All Interplanetary Coronal Mass Ejections Have a Magnetic Flux Rope Structure Near 1 au?. Astrophysical Journal Letters, 2020, 901, L21.	3.0	9
99	Probing the Thermodynamic State of a Coronal Mass Ejection (CME) Up to 1 AU. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	8
100	OBSERVATION OF MAGNETIC RECONNECTION AT A 3D NULL POINT ASSOCIATED WITH A SOLAR ERUPTION. Astrophysical Journal Letters, 2016, 830, L4.	3.0	7
101	An Observational Study of the Recurring Formation and Dissipation of a Dynamic Filament. Solar Physics, 2016, 291, 2373-2390.	1.0	7
102	The Formation and Maintenance of the Dominant Southern Polar Crown Cavity of Cycle 24. Astrophysical Journal, 2017, 835, 135.	1.6	7
103	Correlation Between the Magnetic Field and Plasma Parameters at 1 AU. Solar Physics, 2018, 293, 1.	1.0	7
104	Editorial: Earth-affecting Solar Transients. Solar Physics, 2018, 293, 1.	1.0	6
105	In Situ Analysis of Heliospheric Current Sheet Propagation. Journal of Geophysical Research: Space Physics, 2017, 122, 9803-9814.	0.8	5
106	Comparison of Helium Abundance between ICMEs and Solar Wind near 1 au. Astrophysical Journal, 2022, 925, 137.	1.6	5
107	The Inhomogeneity of Composition Along the Magnetic Cloud Axis. Frontiers in Physics, 2021, 9, .	1.0	4
108	Eruption of the EUV Hot Channel from the Solar Limb and Associated Moving Type IV Radio Burst. Astrophysical Journal, 2022, 927, 108.	1.6	4

#	Article	IF	CITATIONS
109	Geosynchronous Magnetopause Crossings and Their Relationships With Magnetic Storms and Substorms. Space Weather, 2021, 19, e2020SW002704.	1.3	1
110	A Study of the Earth-Affecting CMEs of Solar Cycle 24. , 2017, , 7-26.		0
111	Editorial: Earth-affecting Solar Transients. , 2018, , 1-6.		0
112	Correlation Between the Magnetic Field and Plasma Parameters at 1 AU. , 2018, , 621-633.		0
113	Resolving Two Distinct Thermal X-Ray Components in a Compound Solar Flare. Astrophysical Journal, 2022, 925, 132.	1.6	0