Giovanni Gregori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7636676/publications.pdf

Version: 2024-02-01

80 papers 3,623 citations

236925 25 h-index 51 g-index

80 all docs

80 docs citations

80 times ranked

2756 citing authors

#	Article	IF	CITATIONS
1	Systemic Complement Inhibition with Eculizumab for Geographic Atrophy in Age-Related Macular Degeneration. Ophthalmology, 2014, 121, 693-701.	5.2	264
2	Optical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration. Ophthalmology, 2016, 123, 1309-1319.	5.2	230
3	Quantitative assessment of the retinal microvasculature using optical coherence tomography angiography. Journal of Biomedical Optics, 2016, 21, 066008.	2.6	225
4	A Novel Strategy for Quantifying Choriocapillaris Flow Voids Using Swept-Source OCT Angiography. , 2018, 59, 203.		219
5	Comparison Between Spectral-Domain and Swept-Source Optical Coherence Tomography Angiographic Imaging of Choroidal Neovascularization. , 2017, 58, 1499.		178
6	Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography. Ophthalmology, 2018, 125, 255-266.	5.2	165
7	Retinal Microvascular Network and Microcirculation Assessments in High Myopia. American Journal of Ophthalmology, 2017, 174, 56-67.	3.3	162
8	Age-Related Alterations in the Retinal Microvasculature, Microcirculation, and Microstructure., 2017, 58, 3804.		118
9	Age-dependent Changes in the Macular Choriocapillaris of Normal Eyes Imaged With Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2019, 200, 110-122.	3.3	108
10	Automated Quantitation of Choroidal Neovascularization: A Comparison Study Between Spectral-Domain and Swept-Source OCT Angiograms. , 2017, 58, 1506.		95
11	Anatomic Clinical Trial Endpoints for Nonexudative Age-Related Macular Degeneration. Ophthalmology, 2016, 123, 1060-1079.	5.2	94
12	Correlations between Choriocapillaris Flow Deficits around Geographic Atrophy and Enlargement Rates Based on Swept-Source OCT Imaging. Ophthalmology Retina, 2019, 3, 478-488.	2.4	90
13	Trial End Points and Natural History in Patients With G11778A Leber Hereditary Optic Neuropathy. JAMA Ophthalmology, 2014, 132, 428.	2.5	87
14	Age-Related Changes in Choroidal Thickness and the Volume of Vessels and Stroma Using Swept-Source OCT and Fully Automated Algorithms. Ophthalmology Retina, 2020, 4, 204-215.	2.4	86
15	Longitudinal Wide-Field Swept-Source OCT Angiography of Neovascularization in Proliferative Diabetic Retinopathy after Panretinal Photocoagulation. Ophthalmology Retina, 2019, 3, 350-361.	2.4	77
16	Quantification of Choriocapillaris with Phansalkar Local Thresholding: Pitfalls to Avoid. American Journal of Ophthalmology, 2020, 213, 161-176.	3.3	74
17	Guidelines for Imaging the Choriocapillaris Using OCT Angiography. American Journal of Ophthalmology, 2021, 222, 92-101.	3.3	72
18	Accurate estimation of choriocapillaris flow deficits beyond normal intercapillary spacing with swept source OCT angiography. Quantitative Imaging in Medicine and Surgery, 2018, 8, 658-666.	2.0	69

#	Article	IF	Citations
19	Quantification of Choriocapillaris with Optical Coherence Tomography Angiography: A Comparison Study. American Journal of Ophthalmology, 2019, 208, 111-123.	3.3	64
20	Age-Related Alterations in Retinal Tissue Perfusion and Volumetric Vessel Density., 2019, 60, 685.		60
21	Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography. American Journal of Ophthalmology, 2019, 207, 110-120.	3.3	59
22	Choroidal Thickness and Choroidal Vessel Density in Nonexudative Age-Related Macular Degeneration Using Swept-Source Optical Coherence Tomography Imaging., 2016, 57, 6256.		58
23	Two-Year Risk of Exudation in Eyes with Nonexudative Age-Related Macular Degeneration and Subclinical Neovascularization Detected with Swept Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2019, 208, 1-11.	3.3	57
24	Attenuation correction assisted automatic segmentation for assessing choroidal thickness and vasculature with swept-source OCT. Biomedical Optics Express, 2018, 9, 6067.	2.9	56
25	Predictive Value of the OCT Double-Layer Sign for Identifying Subclinical Neovascularization in Age-Related Macular Degeneration. Ophthalmology Retina, 2019, 3, 211-219.	2.4	53
26	Optical Coherence Tomography Measurements of Choroidal Thickness in Healthy Eyes: Correlation With Age and Axial Length. Ophthalmic Surgery Lasers and Imaging Retina, 2015, 46, 18-24.	0.7	43
27	Correlations Between Choriocapillaris and Choroidal Measurements and the Growth of Geographic Atrophy Using Swept Source OCT Imaging. American Journal of Ophthalmology, 2021, 224, 321-331.	3. 3	40
28	Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers. Scientific Reports, 2020, 10, 15434.	3.3	37
29	En Face Optical Coherence Tomography Imaging for the Detection of Nascent Geographic Atrophy. American Journal of Ophthalmology, 2017, 174, 145-154.	3.3	35
30	Retinal Nonperfusion in Proliferative Diabetic Retinopathy Before and After Panretinal Photocoagulation Assessed by Widefield OCT Angiography. American Journal of Ophthalmology, 2020, 213, 177-185.	3.3	35
31	Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging. Biomedical Optics Express, 2016, 7, 1351.	2.9	30
32	Visual Function and Disability Are Associated with Increased Retinal Volumetric Vessel Density in Patients with Multiple Sclerosis. American Journal of Ophthalmology, 2020, 213, 34-45.	3.3	28
33	The Shape of the Ganglion Cell plus Inner Plexiform Layers of the Normal Human Macula. , 2012, 53, 7412.		23
34	Change in Drusen Area Over Time Compared Using Spectral-Domain Optical Coherence Tomography and Color Fundus Imaging., 2014, 55, 7662.		22
35	A Comparison Study of Polypoidal Choroidal Vasculopathy Imaged with Indocyanine Green Angiography and Swept-Source Optical Coherence Tomography Angiography. American Journal of Ophthalmology, 2020, 217, 240-251.	3.3	22
36	Persistent Hypertransmission Defects on En Face OCT Imaging as a Stand-Alone Precursor for the Future Formation of Geographic Atrophy. Ophthalmology Retina, 2021, 5, 1214-1225.	2.4	21

#	Article	IF	Citations
37	Comparison between Widefield En Face Swept-Source OCT and Conventional Multimodal Imaging for the Detection of Reticular Pseudodrusen. Ophthalmology, 2017, 124, 205-214.	5.2	20
38	In vivo measurement of the human crystalline lens equivalent refractive index using extended-depth OCT. Biomedical Optics Express, 2019, 10, 411.	2.9	20
39	Validation of a Novel Automated Algorithm to Measure Drusen Volume and Area Using Swept Source Optical Coherence Tomography Angiography. Translational Vision Science and Technology, 2021, 10, 11.	2.2	20
40	Quantifying choriocapillaris flow deficits using global and localized thresholding methods: a correlation study. Quantitative Imaging in Medicine and Surgery, 2018, 8, 1102-1112.	2.0	19
41	Correlations Between Different Choriocapillaris Flow Deficit Parameters in Normal Eyes Using Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 209, 18-26.	3.3	19
42	Persistent Hypertransmission Defects Detected on En Face Swept Source Optical Computed Tomography Images Predict the Formation of Geographic Atrophy in Age-Related Macular Degeneration. American Journal of Ophthalmology, 2022, 237, 58-70.	3.3	19
43	Comparison of Neovascular Lesion Area Measurements From Different Swept-Source OCT Angiographic Scan Patterns in Age-Related Macular Degeneration. , 2017, 58, 5098.		18
44	En Face Imaging of Geographic Atrophy Using Different Swept-Source OCT Scan Patterns. Ophthalmology Retina, 2019, 3, 122-132.	2.4	18
45	Complex signal-based optical coherence tomography angiography enables in vivo visualization of choriocapillaris in human choroid. Journal of Biomedical Optics, 2017, 22, 1.	2.6	18
46	An Update on the Hemodynamic Model of Age-Related Macular Degeneration. American Journal of Ophthalmology, 2022, 235, 291-299.	3.3	17
47	Optical Coherence Tomography Measurements of the Retinal Pigment Epithelium to Bruch Membrane Thickness Around Geographic Atrophy Correlate With Growth. American Journal of Ophthalmology, 2022, 236, 249-260.	3.3	17
48	Automatic geographic atrophy segmentation using optical attenuation in OCT scans with deep learning. Biomedical Optics Express, 2022, 13, 1328.	2.9	17
49	Longitudinal Angiographic Evidence That Intraretinal Microvascular Abnormalities Can Evolve into Neovascularization. Ophthalmology Retina, 2020, 4, 1146-1150.	2.4	16
50	Swept-Source OCT Angiographic Characteristics of Treatment-Na \tilde{A} -ve Nonexudative Macular Neovascularization in AMD Prior to Exudation. , 2021, 62, 14.		16
51	Choroidal Changes in Eyes With Polypoidal Choroidal Vasculopathy After Anti-VEGF Therapy Imaged With Swept-Source OCT Angiography. , 2021, 62, 5.		16
52	Retinal nerve fiber layer (RNFL) integrity and its relations to retinal microvasculature and microcirculation in myopic eyes. Eye and Vision (London, England), 2018, 5, 25.	3.0	15
53	Eliminating Visual Acuity and Dilated Fundus Examinations Improves Cost Efficiency of Performing Optical Coherence Tomogrpahy–Guided Intravitreal Injections. American Journal of Ophthalmology, 2020, 219, 222-230.	3.3	14
54	Diagnosing Persistent Hypertransmission Defects on En Face OCT Imaging of Age-Related Macular Degeneration. Ophthalmology Retina, 2022, 6, 387-397.	2.4	14

#	Article	IF	Citations
55	Validation of a Compensation Strategy Used to Detect Choriocapillaris Flow Deficits Under Drusen With Swept Source OCT Angiography. American Journal of Ophthalmology, 2020, 220, 115-127.	3.3	13
56	Analysis of correlations between local geographic atrophy growth rates and local OCT angiography-measured choriocapillaris flow deficits. Biomedical Optics Express, 2021, 12, 4573.	2.9	11
57	Automated morphometric measurement of the retinal pigment epithelium complex and choriocapillaris using swept source OCT. Biomedical Optics Express, 2020, 11, 1834.	2.9	11
58	Dose-Response Relationship between Intravitreal Injections and Retinal Nerve Fiber Layer Thinning in Age-Related Macular Degeneration. Ophthalmology Retina, 2020, 5, 648-654.	2.4	10
59	Predicting the Onset of Exudation in Treatment-Na \tilde{A} ve Eyes with Nonexudative Age-Related Macular Degeneration. Ophthalmology Retina, 2022, 6, 1-3.	2.4	10
60	Depth-resolved visualization and automated quantification of hyperreflective foci on OCT scans using optical attenuation coefficients. Biomedical Optics Express, 2022, 13, 4175.	2.9	9
61	Pathological-Corneas Layer Segmentation and Thickness Measurement in OCT Images. Translational Vision Science and Technology, 2020, 9, 24.	2.2	8
62	Interocular asymmetry of choroidal thickness and vascularity index measurements in normal eyes assessed by swept-source optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2022, 12, 781-795.	2.0	8
63	LONGITUDINAL ANALYSIS OF DIABETIC CHOROIDOPATHY IN PROLIFERATIVE DIABETIC RETINOPATHY TREATED WITH PANRETINAL PHOTOCOAGULATION USING WIDEFIELD SWEPT-SOURCE OPTICAL COHERENCE TOMOGRAPHY. Retina, 2022, 42, 417-425.	1.7	8
64	Wide field swept source OCT angiography in acute syphilitic placoid chorioretinitis. American Journal of Ophthalmology Case Reports, 2020, 18, 100678.	0.7	7
65	Widefield en face optical coherence tomography monitoring of the peri-venular fern-like pattern of paracentral acute middle maculopathy. American Journal of Ophthalmology Case Reports, 2021, 22, 101047.	0.7	7
66	Assessment of eye length changes in accommodation using dynamic extended-depth OCT. Biomedical Optics Express, 2017, 8, 2709.	2.9	6
67	Replacement of polyps with type 1 macular neovascularization in polypoidal choroidal vasculopathy imaged with swept source OCT angiography. American Journal of Ophthalmology Case Reports, 2021, 22, 101057.	0.7	6
68	Local Geographic Atrophy Growth Rates Not Influenced by Close Proximity to Non-Exudative Type 1 Macular Neovascularization. , 2022, 63, 20.		6
69	A Novel Method to Detect and Monitor Retinal Vasculitis Using Swept-Source OCT Angiography. Ophthalmology Retina, 2021, 5, 1226-1234.	2.4	5
70	Growth Modeling for Quantitative, Spatially Resolved Geographic Atrophy Lesion Kinetics. Translational Vision Science and Technology, 2021, 10, 26.	2.2	5
71	Mitigating the effects of choroidal hyper- and hypo-transmission defects on choroidal vascularity index assessments using optical coherence tomography. Quantitative Imaging in Medicine and Surgery, 2022, 12, 2932-2946.	2.0	5
72	The Effect of Software Versions on the Measurement of Retinal Vascular Densities Using Optical Coherence Tomography Angiography. Current Eye Research, 2021, 46, 341-349.	1.5	4

#	Article	IF	CITATION
73	Longitudinal Study of Retinal Structure, Vascular, and Neuronal Function in Patients With Relapsing-Remitting Multiple Sclerosis: 1-Year Follow-Up. Translational Vision Science and Technology, 2021, 10, 6.	2.2	4
74	Longitudinal Swept-Source OCT Angiography of Juxtapapillary Retinal Capillary Hemangioblastoma. Ophthalmology Retina, 2020, 4, 956-958.	2.4	3
75	Swept-Source Optical Coherence Tomography Detection of Bruch's Membrane and Choriocapillaris Abnormalities in Sorsby Macular Dystrophy. Retina, 2022, Publish Ahead of Print, .	1.7	3
76	Shields Gray Crescents Masquerading as Glaucomatous Cupping of the Optic Nerve Head. Ophthalmology Glaucoma, 2018, 1, 99-107.	1.9	2
77	Retinal microvascular and neuronal function in patients with multiple sclerosis: 2-year follow-up. Multiple Sclerosis and Related Disorders, 2021, 56, 103314.	2.0	2
78	Peripapillary Halo in Inflammatory Papillitis of Birdshot Chorioretinopathy. Clinical Ophthalmology, 2021, Volume 15, 2327-2333.	1.8	1
79	Comment on "Outer Retinal Layer Thickening Predicts the Onset of Exudative Neovascular Age-Related Macular Degeneration― American Journal of Ophthalmology, 2021, , .	3.3	0
80	Author Response: Local Geographic Atrophy Growth Rates Not Influenced by Close Proximity to Non-Exudative Type 1 Macular Neovascularization., 2022, 63, 11.		0