Jinshui Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7636598/publications.pdf

Version: 2024-02-01

38	1,071	18	33
papers	citations	h-index	g-index
39	39	39	1585
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Preparation of water-soluble \hat{l}^2 -cyclodextrin/poly(acrylic acid)/graphene oxide nanocomposites as new adsorbents to remove cationic dyes from aqueous solutions. Chemical Engineering Journal, 2014, 257, 299-308.	12.7	174
2	Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution. Applied Surface Science, 2013, 265, 393-398.	6.1	99
3	Turn-on fluorescence sensor for the detection of heparin based on rhodamine B-modified polyethyleneimine–graphene oxide complex. Biosensors and Bioelectronics, 2015, 64, 300-305.	10.1	87
4	A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu(II) from aqueous solutions. Applied Surface Science, 2016, 367, 327-334.	6.1	71
5	pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. Journal of Materials Chemistry, 2010, 20, 3642.	6.7	68
6	Enzymeâ€Inspired Controlled Release of Cucurbit[7]uril Nanovalves by Using Magnetic Mesoporous Silica. Chemistry - A European Journal, 2011, 17, 810-815.	3.3	67
7	Fast removal of aqueous Hg(ii) with quaternary ammonium-functionalized magnetic mesoporous silica and silica regeneration. Journal of Materials Chemistry, 2011, 21, 6981.	6.7	42
8	A novel fluorescent probe for ascorbic acid based on seed-mediated growth of silver nanoparticles quenching of carbon dots fluorescence. Analytical and Bioanalytical Chemistry, 2019, 411, 877-883.	3.7	35
9	"Turn-On―Fluorescence Determination of β-Glucosidase Activity Using Fluorescent Polymer Nanoparticles Formed from Polyethylenimine Cross-Linked with Hydroquinone. ACS Applied Polymer Materials, 2019, 1, 3057-3063.	4.4	32
10	Insight into Unusual Downfield NMR Shifts in the Inclusion Complex of Acridine Orange with Cucurbit[7]uril. European Journal of Organic Chemistry, 2009, 2009, 4931-4938.	2.4	27
11	Fluorescence sensor for detecting protamines based on competitive interactions of polyacrylic acid modified with sodium 4-amino-1-naphthalenesulfonate with protamines and aminated graphene oxide. RSC Advances, 2017, 7, 1432-1438.	3.6	23
12	Long-lived iridium(III) complexes as luminescent probes for the detection of periodate in living cells. Sensors and Actuators B: Chemical, 2019, 288, 392-398.	7.8	23
13	Preparation and application of a novel core/shell organic nanoparticle as a fluorescence probe in the selective determination of Cr(VI). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 62, 565-569.	3.9	22
14	Turn-on Luminescent Probe for Hydrogen Peroxide Sensing and Imaging in Living Cells based on an Iridium(III) Complex–Silver Nanoparticle Platform. Scientific Reports, 2017, 7, 8980.	3.3	22
15	Silver nanoclusters functionalized with Ce(III) ions are a viable "turn-on-off―fluorescent probe for sulfide. Mikrochimica Acta, 2019, 186, 16.	5.0	22
16	Luminescent turn-on detection of Hg(II) via the quenching of an iridium(III) complex by Hg(II)-mediated silver nanoparticles. Scientific Reports, 2017, 7, 3620.	3.3	21
17	A turn-on fluorescent sulfide probe prepared from carbon dots and MnO2 nanosheets. Mikrochimica Acta, 2019, 186, 281.	5.0	21
18	"Turn-on―fluorometric probe for α-glucosidase activity using red fluorescent carbon dots and 3,3′,5,5′-tetramethylbenzidine. Mikrochimica Acta, 2020, 187, 498.	5.0	20

#	Article	IF	CITATIONS
19	A novel spectrofluorimetric method for the determination of DNA. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 32-35.	3.9	19
20	Facile synthesis of fluorescent carbon dots from shrimp shells and using the carbon dots to detect chromium(VI). Spectroscopy Letters, 2019, 52, 194-199.	1.0	18
21	Preparation of nonconjugated fluorescent polymer nanoparticles for use as a fluorescent probe for detection of 2,4,6-trinitrophenol. Analytical and Bioanalytical Chemistry, 2020, 412, 1235-1242.	3.7	18
22	"Turn-on―fluorometric probe for hydroquinone and catechol based on an in situ reaction between protamine sulfate and dihydroxybenzene isomers and the formation of fluorescent polymer nanoparticles. Sensors and Actuators B: Chemical, 2021, 333, 129565.	7.8	17
23	Sensitive detection of Au(III) using regenerative rhodamine B–functionalized chitosan nanoparticles. Sensors and Actuators B: Chemical, 2016, 233, 361-368.	7.8	16
24	Turn-on fluorometric \hat{l}^2 -carotene assay based on competitive host-guest interaction between rhodamine 6G and \hat{l}^2 -carotene with a graphene oxide functionalized with a \hat{l}^2 -cyclodextrin-modified polyethyleneimine. Mikrochimica Acta, 2016, 183, 1161-1168.	5.0	13
25	Preparation of acridine orange-doped silica nanoparticles for pH measurement. Journal of Luminescence, 2014, 147, 155-158.	3.1	12
26	Calcein-functionalized Fe3O4@SiO2 nanoparticles as a reusable fluorescent nanoprobe for copper(II) ion. Mikrochimica Acta, 2015, 182, 547-555.	5.0	12
27	Preparation and use of Cu nanoclusters as fluorescent probes to determine Au(III) ions. Journal of Luminescence, 2017, 185, 258-262.	3.1	12
28	Spectrofluorimetric Assay of Cationic Surfactants by Fluorescence Quenching of 9-Anthracenecarboxylic Acid. Mikrochimica Acta, 2005, 151, 123-126.	5.0	11
29	Convenient fluorescence detection of Cr(<scp>iii</scp>) in aqueous solution based on the gold nanoparticle mediated release of the acridine orange probe. Analytical Methods, 2017, 9, 1786-1791.	2.7	10
30	Preparation and Application of a Novel Composite Nanoparticle as a Protein Fluorescence Probe. Analytical Letters, 2004, 37, 213-223.	1.8	9
31	Using a 1,8-diamino naphthalene–copper (II) system as a turn-on fluorescence probe for detecting Sudan I. Spectroscopy Letters, 2017, 50, 411-416.	1.0	6
32	Sensitive detection of picric acid in an aqueous solution using fluorescent nonconjugated polymer dots as fluorescent probes. Nanotechnology, 2021, 32, 355503.	2.6	6
33	A simple and sensitive turnâ€on fluorescence probe for detection of cetyltrimethylammonium bromide in aqueous samples. Luminescence, 2015, 30, 358-361.	2.9	4
34	Ultrasensitive detection of sulfide ions through interactions between sulfide ions and Au(<scp>iii</scp>) quenching the fluorescence of chitosan microspheres functionalized with rhodamine B and modified with Au(<scp>iii</scp>). RSC Advances, 2016, 6, 38820-38826.	3.6	4
35	Ratiometric fluorescence and smartphone dual-mode detection of glutathione using carbon dots coupled with Ag ⁺ -triggered oxidation of o-phenylenediamine. Nanotechnology, 2021, 32, 445501.	2.6	4
36	Preparation and Application of a Novel Fluorescent Nanoparticle as Aluminum Fluorescence Probe. Analytical Letters, 2003, 36, 1621-1629.	1.8	2

#	Article	IF	CITATIONS
37	Inside Cover: Enzyme-Inspired Controlled Release of Cucurbit[7]uril Nanovalves by Using Magnetic Mesoporous Silica (Chem. Eur. J. 3/2011). Chemistry - A European Journal, 2011, 17, 726-726.	3.3	1
38	Simple and sensitive method for spectrofluorimetric determination of dodecyl benzene sulfonic acid sodium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 65, 1131-1133.	3.9	0