Amparo Alonso Betanzos

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7636118/amparo-alonso-betanzos-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,480 28 172 55 h-index g-index citations papers 4,378 194 5.3 5.93 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
172	Feature Selection: From The Past to The Future. Learning and Analytics in Intelligent Systems, 2022, 11-3.	40.3	0
171	Anomaly Detection on Natural Language Processing to Improve Predictions on Tourist Preferences. <i>Electronics (Switzerland)</i> , 2022 , 11, 779	2.6	1
170	Low-precision feature selection on microarray data: an information theoretic approach <i>Medical and Biological Engineering and Computing</i> , 2022 , 60, 1333	3.1	
169	Wavefront Marching Methods: A Unified Algorithm to Solve Eikonal and Static Hamilton-Jacobi Equations. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2021 , 43, 4177-4188	13.3	1
168	Applying machine learning to detect early stages of cardiac remodelling and dysfunction. <i>European Heart Journal Cardiovascular Imaging</i> , 2021 , 22, 1208-1217	4.1	5
167	Scalable feature selection using ReliefF aided by locality-sensitive hashing. <i>International Journal of Intelligent Systems</i> , 2021 , 36, 6161-6179	8.4	3
166	Dealing with heterogeneity in the context of distributed feature selection for classification. <i>Knowledge and Information Systems</i> , 2021 , 63, 233-276	2.4	O
165	How important is data quality? Best classifiers vs best features. <i>Neurocomputing</i> , 2021 , 470, 365-365	5.4	О
164	Machine learning techniques to predict different levels of hospital care of CoVid-19. <i>Applied Intelligence</i> , 2021 , 1-19	4.9	1
163	Generating a Synthetic Population of Agents Through Decision Trees and Socio Demographic Data. <i>Lecture Notes in Computer Science</i> , 2021 , 128-140	0.9	
162	Feature selection with limited bit depth mutual information for portable embedded systems. Knowledge-Based Systems, 2020 , 197, 105885	7.3	3
161	Community detection and social network analysis based on the Italian wars of the 15th century. <i>Future Generation Computer Systems</i> , 2020 , 113, 25-40	7.5	5
160	Fast Distributed k NN Graph Construction Using Auto-tuned Locality-sensitive Hashing. <i>ACM Transactions on Intelligent Systems and Technology</i> , 2020 , 11, 1-18	8	2
159	When Size Matters: Markov Blanket with Limited Bit Depth Conditional Mutual Information. <i>Communications in Computer and Information Science</i> , 2020 , 243-255	0.3	1
158	A scalable saliency-based feature selection method with instance-level information. <i>Knowledge-Based Systems</i> , 2020 , 192, 105326	7.3	7
157	One-Class Convex Hull-Based Algorithm for Classification in Distributed Environments. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems,</i> 2020 , 50, 386-396	7.3	12
156	Performance evaluation of unsupervised techniques in cyber-attack anomaly detection. <i>Journal of Ambient Intelligence and Humanized Computing</i> , 2020 , 11, 4477-4489	3.7	14

155	Challenges and Future Trends for Microarray Analysis. <i>Methods in Molecular Biology</i> , 2019 , 1986, 283-29	9 3 1.4	5
154	Feature Selection Applied to Microarray Data. <i>Methods in Molecular Biology</i> , 2019 , 1986, 123-152	1.4	О
153	Large scale anomaly detection in mixed numerical and categorical input spaces. <i>Information Sciences</i> , 2019 , 487, 115-127	7.7	9
152	Biases in feature selection with missing data. <i>Neurocomputing</i> , 2019 , 342, 97-112	5.4	7
151	Optimizing novelty and diversity in recommendations. <i>Progress in Artificial Intelligence</i> , 2019 , 8, 101-10	94	3
150	A Review of Microarray Datasets: Where to Find Them and Specific Characteristics. <i>Methods in Molecular Biology</i> , 2019 , 1986, 65-85	1.4	7
149	A scalable decision-tree-based method to explain interactions in dyadic data. <i>Decision Support Systems</i> , 2019 , 127, 113141	5.6	5
148	Ensembles for feature selection: A review and future trends. <i>Information Fusion</i> , 2019 , 52, 1-12	16.7	153
147	Distributed classification based on distances between probability distributions in feature space. <i>Information Sciences</i> , 2019 , 496, 431-450	7.7	2
146	Distributed correlation-based feature selection in spark. <i>Information Sciences</i> , 2019 , 496, 287-299	7.7	18
145	Insights into distributed feature ranking. <i>Information Sciences</i> , 2019 , 496, 378-398	7.7	4
144	On developing an automatic threshold applied to feature selection ensembles. <i>Information Fusion</i> , 2019 , 45, 227-245	16.7	38
143	On the scalability of feature selection methods on high-dimensional data. <i>Knowledge and Information Systems</i> , 2018 , 56, 395-442	2.4	20
142	Recent Advances in Ensembles for Feature Selection. Intelligent Systems Reference Library, 2018,	0.8	7
141	Emerging Challenges. Intelligent Systems Reference Library, 2018, 173-205	0.8	
140	An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark. <i>IEEE Transactions on Systems, Man, and Cybernetics: Systems</i> , 2018 , 48, 1441-1453	7.3	37
139	Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches. <i>Advances in Experimental Medicine and Biology</i> , 2018 , 1065, 607-626	3.6	18
138	Foundations of Ensemble Learning. Intelligent Systems Reference Library, 2018, 39-51	0.8	

137	Feature Selection. Intelligent Systems Reference Library, 2018, 13-37	0.8	1
136	Software Tools. Intelligent Systems Reference Library, 2018, 157-171	0.8	
135	Other Ensemble Approaches. Intelligent Systems Reference Library, 2018, 115-138	0.8	
134	Applications of Ensembles Versus Traditional Approaches: Experimental Results. <i>Intelligent Systems Reference Library</i> , 2018 , 139-156	0.8	
133	Ensembles for Feature Selection. Intelligent Systems Reference Library, 2018, 53-81	0.8	
132	Combination of Outputs. Intelligent Systems Reference Library, 2018, 83-96	0.8	
131	Evaluation of Ensembles for Feature Selection. Intelligent Systems Reference Library, 2018, 97-113	0.8	2
130	Preprocessing in High Dimensional Datasets. Intelligent Systems Reference Library, 2018, 247-271	0.8	2
129	Empirically-Derived Behavioral Rules in Agent-Based Models Using Decision Trees Learned from Questionnaire Data. <i>Understanding Complex Systems</i> , 2017 , 53-76	0.4	3
128	Interactions Matter: Modelling Everyday Pro-environmental Norm Transmission and Diffusion in Workplace Networks. <i>Understanding Complex Systems</i> , 2017 , 27-52	0.4	
127	Testing Different Ensemble Configurations for Feature Selection. <i>Neural Processing Letters</i> , 2017 , 46, 857-880	2.4	25
126	Ensemble feature selection: Homogeneous and heterogeneous approaches. <i>Knowledge-Based Systems</i> , 2017 , 118, 124-139	7:3	113
125	On the use of different base classifiers in multiclass problems. <i>Progress in Artificial Intelligence</i> , 2017 , 6, 315-323	4	3
124	On the use of feature selection to improve the detection of sea oil spills in SAR images. <i>Computers and Geosciences</i> , 2017 , 100, 166-178	4.5	28
123	Volume, variety and velocity in Data Science. <i>Knowledge-Based Systems</i> , 2017 , 117, 1-2	7.3	4
122	Can classification performance be predicted by complexity measures? A study using microarray data. <i>Knowledge and Information Systems</i> , 2017 , 51, 1067-1090	2.4	26
121	Medical Expert Systems 2017 , 1-15		1
120	Exploring the consequences of distributed feature selection in DNA microarray data 2017,		8

(2015-2017)

119	assignments 2017 ,		1	
118	Testing Scenarios to Achieve Workplace Sustainability Goals Using Backcasting and Agent-Based Modeling. <i>Environment and Behavior</i> , 2017 , 49, 1007-1037	5.6	6	
117	Content-based methods in peer assessment of open-response questions to grade students as authors and as graders. <i>Knowledge-Based Systems</i> , 2017 , 117, 79-87	7.3	6	
116	Centralized vs. distributed feature selection methods based on data complexity measures. Knowledge-Based Systems, 2017, 117, 27-45	7.3	36	
115	Fast-mRMR: Fast Minimum Redundancy Maximum Relevance Algorithm for High-Dimensional Big Data. <i>International Journal of Intelligent Systems</i> , 2017 , 32, 134-152	8.4	76	
114	A comparison of performance of K-complex classification methods using feature selection. <i>Information Sciences</i> , 2016 , 328, 1-14	7.7	27	
113	A unified pipeline for online feature selection and classification. <i>Expert Systems With Applications</i> , 2016 , 55, 532-545	7.8	11	
112	Selection of the Best Base Classifier in One-Versus-One Using Data Complexity Measures. <i>Lecture Notes in Computer Science</i> , 2016 , 110-120	0.9	1	
111	Using Data Complexity Measures for Thresholding in Feature Selection Rankers. <i>Lecture Notes in Computer Science</i> , 2016 , 121-131	0.9	7	
110	Feature selection for high-dimensional data. <i>Progress in Artificial Intelligence</i> , 2016 , 5, 65-75	4	60	
109	Multithreaded and Spark parallelization of feature selection filters. <i>Journal of Computational Science</i> , 2016 , 17, 609-619	3.4	26	
108	Fault detection via recurrence time statistics and one-class classification. <i>Pattern Recognition Letters</i> , 2016 , 84, 8-14	4.7	13	
107	Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2016 , 6, 5-21	6.9	71	
106	An Agent-Based Model for Simulating Environmental Behavior in an Educational Organization. <i>Neural Processing Letters</i> , 2015 , 42, 89-118	2.4	12	
105	Stream change detection via passive-aggressive classification and Bernoulli CUSUM. <i>Information Sciences</i> , 2015 , 305, 130-145	7.7	6	
104	A factorization approach to evaluate open-response assignments in MOOCs using preference learning on peer assessments. <i>Knowledge-Based Systems</i> , 2015 , 85, 322-328	7.3	18	
103	A Distributed Feature Selection Approach Based on a Complexity Measure. <i>Lecture Notes in Computer Science</i> , 2015 , 15-28	0.9	7	
102	Feature Selection for High-Dimensional Data. <i>The Artificial Intelligence: Foundationsory, and Algorithms</i> , 2015 ,	43	76	

101	Foundations of Feature Selection. The Artificial Intelligence: Foundationsory, and Algorithms, 2015, 13-2	843	5
100	Feature Selection in DNA Microarray Classification. <i>The Artificial Intelligence: Foundationsory, and Algorithms</i> , 2015 , 61-94	43	4
99	A Critical Review of Feature Selection Methods. <i>The Artificial Intelligence: Foundationsory, and Algorithms</i> , 2015 , 29-60	43	2
98	Dealing with inter-expert variability in retinopathy of prematurity: A machine learning approach. <i>Computer Methods and Programs in Biomedicine</i> , 2015 , 122, 1-15	6.9	28
97	Ensemble Feature Selection for Rankings of Features. Lecture Notes in Computer Science, 2015, 29-42	0.9	8
96	An insight on complexity measures and classification in microarray data 2015,		5
95	Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning. <i>Clinical Medicine Insights: Cardiology</i> , 2015 , 9, 57-71	3.2	15
94	Recent advances and emerging challenges of feature selection in the context of big data. <i>Knowledge-Based Systems</i> , 2015 , 86, 33-45	7.3	158
93	A Time Efficient Approach for Distributed Feature Selection Partitioning by Features. <i>Lecture Notes in Computer Science</i> , 2015 , 245-254	0.9	4
92	Distributed Entropy Minimization Discretizer for Big Data Analysis under Apache Spark 2015 ,		15
91	Real-Time Tear Film Classification Through Cost-Based Feature Selection. <i>Lecture Notes in Computer Science</i> , 2015 , 78-98	0.9	2
90	Distributed feature selection: An application to microarray data classification. <i>Applied Soft Computing Journal</i> , 2015 , 30, 136-150	7.5	116
89	Designing Decision Trees for Representing Sustainable Behaviours in Agents. <i>Advances in Intelligent Systems and Computing</i> , 2015 , 169-176	0.4	1
88	Emerging Challenges. <i>The Artificial Intelligence: Foundationsory, and Algorithms</i> , 2015 , 125-132	43	3
87	A framework for cost-based feature selection. <i>Pattern Recognition</i> , 2014 , 47, 2481-2489	7.7	48
86	A methodology for improving tear film lipid layer classification. <i>IEEE Journal of Biomedical and Health Informatics</i> , 2014 , 18, 1485-93	7.2	21
85	Data classification using an ensemble of filters. <i>Neurocomputing</i> , 2014 , 135, 13-20	5.4	57
84	A review of microarray datasets and applied feature selection methods. <i>Information Sciences</i> , 2014 , 282, 111-135	7.7	352

(2011-2013)

83	A review of feature selection methods on synthetic data. <i>Knowledge and Information Systems</i> , 2013 , 34, 483-519	2.4	381
82	Toward the scalability of neural networks through feature selection. <i>Expert Systems With Applications</i> , 2013 , 40, 2807-2816	7.8	9
81	A minimum volume covering approach with a set of ellipsoids. <i>IEEE Transactions on Pattern Analysis and Machine Intelligence</i> , 2013 , 35, 2997-3009	13.3	4
80	Automatic bearing fault diagnosis based on one-class ESVM. <i>Computers and Industrial Engineering</i> , 2013 , 64, 357-365	6.4	106
79	Up-to-Date Feature Selection Methods for Scalable and Efficient Machine Learning 2013 , 1-26		3
78	A Decision-Making Model for Environmental Behavior in Agent-Based Modeling. <i>Lecture Notes in Computer Science</i> , 2013 , 152-160	0.9	1
77	Exact Incremental Learning for a Single Non-linear Neuron Based on Taylor Expansion and Greville Formula. <i>Lecture Notes in Computer Science</i> , 2013 , 149-158	0.9	1
76	An ensemble of filters and classifiers for microarray data classification. <i>Pattern Recognition</i> , 2012 , 45, 531-539	7.7	117
75	Nonlinear single layer neural network training algorithm for incremental, nonstationary and distributed learning scenarios. <i>Pattern Recognition</i> , 2012 , 45, 4536-4546	7.7	14
74	Information Theoretic Learning and local modeling for binary and multiclass classification. <i>Progress in Artificial Intelligence</i> , 2012 , 1, 315-328	4	2
73	Interferential Tear Film Lipid Layer Classification: An Automatic Dry Eye Test 2012,		2
72	An Agent-Based Prototype for Enhancing Sustainability Behavior at an Academic Environment. <i>Advances in Intelligent and Soft Computing</i> , 2012 , 257-264		1
71	Power wind mill fault detection via one-class 臣VM vibration signal analysis 2011 ,		9
70	A study of performance on microarray data sets for a classifier based on information theoretic learning. <i>Neural Networks</i> , 2011 , 24, 888-96	9.1	10
69	Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset. <i>Expert Systems With Applications</i> , 2011 , 38, 5947-5957	7.8	117
68	Efficiency of local models ensembles for time series prediction. <i>Expert Systems With Applications</i> , 2011 , 38, 6884-6894	7.8	16
67	Toward an ensemble of filters for classification 2011,		1
66	Reducing dimensionality in a database of sleep EEG arousals. <i>Expert Systems With Applications</i> , 2011 , 38, 7746-7754	7.8	17

65	Combining functional networks and sensitivity analysis as wrapper method for feature selection. <i>Expert Systems With Applications</i> , 2011 , 38, 12930-12938	7.8	1
64	A robust incremental learning method for non-stationary environments. <i>Neurocomputing</i> , 2011 , 74, 18	00 5 .1480	8 29
63	On the behavior of feature selection methods dealing with noise and relevance over synthetic scenarios 2011 ,		3
62	Scalability Analysis of ANN Training Algorithms with Feature Selection. <i>Lecture Notes in Computer Science</i> , 2011 , 84-93	0.9	3
61	Local Modeling Classifier for Microarray Gene-Expression Data. <i>Lecture Notes in Computer Science</i> , 2010 , 11-20	0.9	1
60	Multiclass classifiers vs multiple binary classifiers using filters for feature selection 2010,		4
59	On the effectiveness of discretization on gene selection of microarray data 2010 ,		15
58	A new convex objective function for the supervised learning of single-layer neural networks. <i>Pattern Recognition</i> , 2010 , 43, 1984-1992	7.7	29
57	Fault Prognosis of Mechanical Components Using On-Line Learning Neural Networks. <i>Lecture Notes in Computer Science</i> , 2010 , 60-66	0.9	5
56	A Log Analyzer Agent for Intrusion Detection in a Multi-Agent System. <i>Lecture Notes in Computer Science</i> , 2010 , 168-177	0.9	1
55	A Snort-based agent for a JADE multi-agent intrusion detection system. <i>International Journal of Intelligent Information and Database Systems</i> , 2009 , 3, 107	0.3	6
54	Conversion methods for symbolic features: A comparison applied to an intrusion detection problem. <i>Expert Systems With Applications</i> , 2009 , 36, 10612-10617	7.8	28
53	A Wrapper Method for Feature Selection in Multiple Classes Datasets. <i>Lecture Notes in Computer Science</i> , 2009 , 456-463	0.9	8
52	A combination of discretization and filter methods for improving classification performance in KDD Cup 99 dataset 2009 ,		12
51	2009,		4
50	Combining Feature Selection and Local Modelling in the KDD Cup 99 Dataset. <i>Lecture Notes in Computer Science</i> , 2009 , 824-833	0.9	4
49	A JADE-Based Framework for Developing Evolutionary Multi-Agent Systems. <i>Advances in Intelligent and Soft Computing</i> , 2009 , 339-348		
48	Multispectral classification of grass weeds and wheat (Triticum durum) using linear and nonparametric functional discriminant analysis and neural networks. <i>Weed Research</i> , 2008 , 48, 28-37	1.9	37

(2002-2007)

47	Functional network topology learning and sensitivity analysis based on ANOVA decomposition. <i>Neural Computation</i> , 2007 , 19, 231-57	2.9	9
46	Filter Methods for Feature Selection 🛭 Comparative Study 2007 , 178-187		89
45	A Comparative Study of Local Classifiers Based on Clustering Techniques and One-Layer Neural Networks 2007 , 168-177		
44	A Misuse Detection Agent for Intrusion Detection in a Multi-agent Architecture. <i>Lecture Notes in Computer Science</i> , 2007 , 466-475	0.9	4
43	An Improved Version of the Wrapper Feature Selection Method Based on Functional Decomposition. <i>Lecture Notes in Computer Science</i> , 2007 , 240-249	0.9	1
42	Feature Selection Based on Sensitivity Analysis. <i>Lecture Notes in Computer Science</i> , 2007 , 239-248	0.9	4
41	A Fast Classification Algorithm Based on Local Models. <i>Lecture Notes in Computer Science</i> , 2006 , 249-25	56 0.9	
40	Functional Networks and Analysis of Variance for Feature Selection. <i>Lecture Notes in Computer Science</i> , 2006 , 1031-1038	0.9	3
39	Linear-least-squares initialization of multilayer perceptrons through backpropagation of the desired response. <i>IEEE Transactions on Neural Networks</i> , 2005 , 16, 325-337		38
38	Modelling Engineering Problems Using Dimensional Analysis for Feature Extraction. <i>Lecture Notes in Computer Science</i> , 2005 , 949-954	0.9	
37	A new method for sleep apnea classification using wavelets and feedforward neural networks. <i>Artificial Intelligence in Medicine</i> , 2005 , 34, 65-76	7.4	61
36	A measure of fault tolerance for functional networks. <i>Neurocomputing</i> , 2004 , 62, 327-347	5.4	8
35	An intelligent system for forest fire risk prediction and fire fighting management in Galicia. <i>Expert Systems With Applications</i> , 2003 , 25, 545-554	7.8	68
34	Linear Least-Squares Based Methods for Neural Networks Learning. <i>Lecture Notes in Computer Science</i> , 2003 , 84-91	0.9	8
33	A Bayesian Neural Network Approach for Sleep Apnea Classification. <i>Lecture Notes in Computer Science</i> , 2003 , 284-293	0.9	О
32	Recovering Missing Data with Functional and Bayesian Networks. <i>Lecture Notes in Computer Science</i> , 2003 , 489-496	0.9	1
31	A new learning method for single layer neural networks based on a regularized cost function. <i>Lecture Notes in Computer Science</i> , 2003 , 270-277	0.9	1
30	Empirical evaluation of a hybrid intelligent monitoring system using different measures of effectiveness. <i>Artificial Intelligence in Medicine</i> , 2002 , 24, 71-96	7.4	13

29	Intelligent analysis and pattern recognition in cardiotocographic signals using a tightly coupled hybrid system. <i>Artificial Intelligence</i> , 2002 , 136, 1-27	3.6	40
28	A global optimum approach for one-layer neural networks. <i>Neural Computation</i> , 2002 , 14, 1429-49	2.9	44
27	Symbolic, Neural and Neuro-fuzzy Approaches to Pattern Recognition in Cardiotocograms. <i>International Series in Intelligent Technologies</i> , 2002 , 489-500		3
26	Local Modeling Using Self-Organizing Maps and Single Layer Neural Networks. <i>Lecture Notes in Computer Science</i> , 2002 , 945-950	0.9	2
25	Adaptive pattern recognition in the analysis of cardiotocographic records. <i>IEEE Transactions on Neural Networks</i> , 2001 , 12, 1188-95		13
24	An Auto-learning System for the Classification of Fetal Heart Rate Decelerative Patterns. <i>Lecture Notes in Computer Science</i> , 2001 , 393-400	0.9	
23	A Measure of Noise Immunity for Functional Networks. Lecture Notes in Computer Science, 2001, 293-30	00 0.9	1
22	Analysis and evaluation of hard and fuzzy clustering segmentation techniques in burned patient images. <i>Image and Vision Computing</i> , 2000 , 18, 1045-1054	3.7	19
21	Applying statistical, uncertainty-based and connectionist approaches to the prediction of fetal outcome: a comparative study. <i>Artificial Intelligence in Medicine</i> , 1999 , 17, 37-57	7.4	6
20	EECB: a knowledge elicitation tool based on repertory grid and city block metric. <i>Expert Systems With Applications</i> , 1998 , 14, 249-258	7.8	2
19	A hybrid intelligent system for the pre-processing of Fetal Heart rate signals in antenatal testing. <i>Lecture Notes in Computer Science</i> , 1997 , 628-633	0.9	2
18	A comparative analysis of the neonatal prognosis problem using artificial neural networks, statistical techniques and certainty management techniques. <i>Lecture Notes in Computer Science</i> , 1997 , 995-1004	0.9	
17	. IEEE Computer Applications in Power, 1997 , 10, 36-41		3
16	Information analysis and validation of intelligent monitoring systems in intensive care units. <i>IEEE Transactions on Information Technology in Biomedicine</i> , 1997 , 1, 87-99		17
15	The NST-EXPERT project: the need to evolve. <i>Artificial Intelligence in Medicine</i> , 1995 , 7, 297-313	7.4	25
14	Automated analog-to-digital conversion of graphical cardiotocographic records. <i>Journal of Clinical Engineering</i> , 1995 , 20, 57-65	0.4	1
13	. IEEE Engineering in Medicine and Biology Magazine, 1993 , 12, 59-68		11
12	PATRICIA: An expert system that incorporates a patient-oriented approach for the management of ICU patients 1992 ,		2

Ventilatory Management39-39-7

A connectionist approach to predict antenatal outcome 1992, 11 2 Foetos: an expert system for fetal assessment. IEEE Transactions on Biomedical Engineering, 1991, 10 10 38, 199-211 Uncertainty based approach for symbolic classification of numeric variables in intensive care units. 6 0.4 9 Journal of Clinical Engineering, 1990, 15, 361-9 An Approach to Intensive Care Monitoring That Combines Deterministic And Heuristic Techniques. 6 0.4 Journal of Clinical Engineering, 1990, 15, 35-44 FOETOS in clinical practice: A retrospective analysis of its performance. Artificial Intelligence in 8 7.4 7 Medicine, 1989, 1, 93-99 ESTER: an expert system for management of respiratory weaning therapy. IEEE Transactions on 6 27 Biomedical Engineering, 1989, 36, 559-64 Automatic unit for monitoring and diagnosis with the contraction stress test. Medical and Biological 5 3.1 3 Engineering and Computing, 1988, 26, 410-5 Accurate initialization of neural network weights by backpropagation of the desired response A tool for agent communication in Mozart/Oz 1 Intelligent Monitoring and Symbolic Representation of Clinical Knowledge: An Application in Acute 2