Amparo Alonso Betanzos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7636118/publications.pdf

Version: 2024-02-01

184 papers

5,272 citations

32 h-index 98798 67 g-index

194 all docs

194 docs citations

times ranked

194

4534 citing authors

#	Article	IF	CITATIONS
1	A review of feature selection methods on synthetic data. Knowledge and Information Systems, 2013, 34, 483-519.	3.2	563
2	A review of microarray datasets and applied feature selection methods. Information Sciences, 2014, 282, 111-135.	6.9	507
3	Ensembles for feature selection: A review and future trends. Information Fusion, 2019, 52, 1-12.	19.1	327
4	Recent advances and emerging challenges of feature selection in the context of big data. Knowledge-Based Systems, 2015, 86, 33-45.	7.1	219
5	Ensemble feature selection: Homogeneous and heterogeneous approaches. Knowledge-Based Systems, 2017, 118, 124-139.	7.1	196
6	An ensemble of filters and classifiers for microarray data classification. Pattern Recognition, 2012, 45, 531-539.	8.1	172
7	Filter Methods for Feature Selection – A Comparative Study. , 2007, , 178-187.		169
8	Feature selection and classification in multiple class datasets: An application to KDD Cup 99 dataset. Expert Systems With Applications, 2011, 38, 5947-5957.	7.6	166
9	Distributed feature selection: An application to microarray data classification. Applied Soft Computing Journal, 2015, 30, 136-150.	7.2	154
10	Automatic bearing fault diagnosis based on one-class $\hat{l}/2$ -SVM. Computers and Industrial Engineering, 2013, 64, 357-365.	6.3	142
11	Feature Selection for High-Dimensional Data. The Artificial Intelligence: Foundationsory, and Algorithms, 2015, , .	0.4	141
12	Fast-mRMR: Fast Minimum Redundancy Maximum Relevance Algorithm for High-Dimensional Big Data. International Journal of Intelligent Systems, 2017, 32, 134-152.	5.7	125
13	Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2016, 6, 5-21.	6.8	105
14	An intelligent system for forest fire risk prediction and fire fighting management in Galicia. Expert Systems With Applications, 2003, 25, 545-554.	7.6	99
15	Feature selection for high-dimensional data. Progress in Artificial Intelligence, 2016, 5, 65-75.	2.4	97
16	Data classification using an ensemble of filters. Neurocomputing, 2014, 135, 13-20.	5.9	78
17	A new method for sleep apnea classification using wavelets and feedforward neural networks. Artificial Intelligence in Medicine, 2005, 34, 65-76.	6.5	7 5
18	On developing an automatic threshold applied to feature selection ensembles. Information Fusion, 2019, 45, 227-245.	19.1	73

#	Article	IF	Citations
19	A framework for cost-based feature selection. Pattern Recognition, 2014, 47, 2481-2489.	8.1	70
20	A Global Optimum Approach for One-Layer Neural Networks. Neural Computation, 2002, 14, 1429-1449.	2.2	56
21	On the use of feature selection to improve the detection of sea oil spills in SAR images. Computers and Geosciences, 2017, 100, 166-178.	4.2	56
22	An Information Theory-Based Feature Selection Framework for Big Data Under Apache Spark. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48, 1441-1453.	9.3	55
23	Centralized vs. distributed feature selection methods based on data complexity measures. Knowledge-Based Systems, 2017, 117, 27-45.	7.1	53
24	Intelligent analysis and pattern recognition in cardiotocographic signals using a tightly coupled hybrid system. Artificial Intelligence, 2002, 136, 1-27.	5.8	51
25	Linear-Least-Squares Initialization of Multilayer Perceptrons Through Backpropagation of the Desired Response. IEEE Transactions on Neural Networks, 2005, 16, 325-337.	4.2	48
26	Testing Different Ensemble Configurations for Feature Selection. Neural Processing Letters, 2017, 46, 857-880.	3.2	47
27	Multispectral classification of grass weeds and wheat (<i>Triticum durum</i>) using linear and nonparametric functional discriminant analysis and neural networks. Weed Research, 2008, 48, 28-37.	1.7	44
28	Big-Data Analysis, Cluster Analysis, and Machine-Learning Approaches. Advances in Experimental Medicine and Biology, 2018, 1065, 607-626.	1.6	41
29	Dealing with inter-expert variability in retinopathy of prematurity: A machine learning approach. Computer Methods and Programs in Biomedicine, 2015, 122, 1-15.	4.7	36
30	Conversion methods for symbolic features: A comparison applied to an intrusion detection problem. Expert Systems With Applications, 2009, 36, 10612-10617.	7.6	35
31	Multithreaded and Spark parallelization of feature selection filters. Journal of Computational Science, 2016, 17, 609-619.	2.9	35
32	A comparison of performance of K-complex classification methods using feature selection. Information Sciences, 2016, 328, 1-14.	6.9	35
33	ESTER: an expert system for management of respiratory weaning therapy. IEEE Transactions on Biomedical Engineering, 1989, 36, 559-564.	4.2	34
34	A new convex objective function for the supervised learning of single-layer neural networks. Pattern Recognition, 2010, 43, 1984-1992.	8.1	33
35	A robust incremental learning method for non-stationary environments. Neurocomputing, 2011, 74, 1800-1808.	5.9	33
36	Can classification performance be predicted by complexity measures? A study using microarray data. Knowledge and Information Systems, 2017, 51, 1067-1090.	3.2	33

#	Article	lF	Citations
37	Distributed correlation-based feature selection in spark. Information Sciences, 2019, 496, 287-299.	6.9	33
38	A Methodology for Improving Tear Film Lipid Layer Classification. IEEE Journal of Biomedical and Health Informatics, 2014, 18, 1485-1493.	6.3	32
39	Performance evaluation of unsupervised techniques in cyber-attack anomaly detection. Journal of Ambient Intelligence and Humanized Computing, 2020, 11, 4477-4489.	4.9	32
40	On the scalability of feature selection methods on high-dimensional data. Knowledge and Information Systems, 2018, 56, 395-442.	3.2	31
41	The NST-EXPERT project: the need to evolve. Artificial Intelligence in Medicine, 1995, 7, 297-313.	6.5	28
42	On the effectiveness of discretization on gene selection of microarray data. , 2010, , .		24
43	A factorization approach to evaluate open-response assignments in MOOCs using preference learning on peer assessments. Knowledge-Based Systems, 2015, 85, 322-328.	7.1	23
44	Reducing dimensionality in a database of sleep EEG arousals. Expert Systems With Applications, 2011, 38, 7746-7754.	7.6	22
45	Information analysis and validation of intelligent monitoring systems in intensive care units. IEEE Transactions on Information Technology in Biomedicine, 1997, 1, 87-99.	3.2	21
46	A combination of discretization and filter methods for improving classification performance in KDD Cup 99 dataset., 2009,,.		20
47	Exploring Guidelines for Classification of Major Heart Failure Subtypes by Using Machine Learning. Clinical Medicine Insights: Cardiology, 2015, 9s1, CMC.S18746.	1.8	20
48	Efficiency of local models ensembles for time series prediction. Expert Systems With Applications, 2011, 38, 6884-6894.	7.6	19
49	The PATRICIA project: a semantic-based methodology for intelligent monitoring in the ICU. IEEE Engineering in Medicine and Biology Magazine, 1993, 12, 59-68.	0.8	17
50	A Wrapper Method for Feature Selection in Multiple Classes Datasets. Lecture Notes in Computer Science, 2009, , 456-463.	1.3	17
51	Power wind mill fault detection via one-class & amp; \pm x03BD; -SVM vibration signal analysis. , 2011, , .		17
52	Nonlinear single layer neural network training algorithm for incremental, nonstationary and distributed learning scenarios. Pattern Recognition, 2012, 45, 4536-4546.	8.1	17
53	Distributed Entropy Minimization Discretizer for Big Data Analysis under Apache Spark., 2015,,.		17
54	Empirical evaluation of a hybrid intelligent monitoring system using different measures of effectiveness. Artificial Intelligence in Medicine, 2002, 24, 71-96.	6.5	16

#	Article	IF	Citations
55	Ensemble Feature Selection for Rankings of Features. Lecture Notes in Computer Science, 2015, , 29-42.	1.3	16
56	Fault detection via recurrence time statistics and one-class classification. Pattern Recognition Letters, 2016, 84, 8-14.	4.2	16
57	A Review of Microarray Datasets: Where to Find Them and Specific Characteristics. Methods in Molecular Biology, 2019, 1986, 65-85.	0.9	16
58	Large scale anomaly detection in mixed numerical and categorical input spaces. Information Sciences, 2019, 487, 115-127.	6.9	16
59	Biases in feature selection with missing data. Neurocomputing, 2019, 342, 97-112.	5.9	16
60	Adaptive pattern recognition in the analysis of cardiotocographic records. IEEE Transactions on Neural Networks, 2001, 12, 1188-1195.	4.2	15
61	Applying machine learning to detect early stages of cardiac remodelling and dysfunction. European Heart Journal Cardiovascular Imaging, 2021, 22, 1208-1217.	1.2	15
62	An Agent-Based Model for Simulating Environmental Behavior in an Educational Organization. Neural Processing Letters, 2015, 42, 89-118.	3.2	14
63	Challenges and Future Trends for Microarray Analysis. Methods in Molecular Biology, 2019, 1986, 283-293.	0.9	14
64	One-Class Convex Hull-Based Algorithm for Classification in Distributed Environments. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 386-396.	9.3	14
65	Foetos: an expert system for fetal assessment. IEEE Transactions on Biomedical Engineering, 1991, 38, 199-211.	4.2	13
66	Recent Advances in Ensembles for Feature Selection. Intelligent Systems Reference Library, 2018, , .	1.2	13
67	Content-based methods in peer assessment of open-response questions to grade students as authors and as graders. Knowledge-Based Systems, 2017, 117, 79-87.	7.1	12
68	Community detection and social network analysis based on the Italian wars of the 15th century. Future Generation Computer Systems, 2020, 113, 25-40.	7.5	12
69	A study of performance on microarray data sets for a classifier based on information theoretic learning. Neural Networks, 2011, 24, 888-96.	5.9	11
70	A unified pipeline for online feature selection and classification. Expert Systems With Applications, 2016, 55, 532-545.	7.6	11
71	A scalable decision-tree-based method to explain interactions in dyadic data. Decision Support Systems, 2019, 127, 113141.	5.9	11
72	Scalable feature selection using ReliefF aided by localityâ€sensitive hashing. International Journal of Intelligent Systems, 2021, 36, 6161-6179.	5.7	11

#	Article	IF	Citations
7 3	Using Data Complexity Measures for Thresholding in Feature Selection Rankers. Lecture Notes in Computer Science, 2016, , 121-131.	1.3	11
74	FOETOS in clinical practice: A retrospective analysis of its performance. Artificial Intelligence in Medicine, 1989, 1, 93-99.	6.5	10
7 5	An Approach to Intensive Care Monitoring That Combines Deterministic And Heuristic Techniques. Journal of Clinical Engineering, 1990, 15, 35-44.	0.1	10
76	Functional Network Topology Learning and Sensitivity Analysis Based on ANOVA Decomposition. Neural Computation, 2007, 19, 231-257.	2.2	10
77	Toward the scalability of neural networks through feature selection. Expert Systems With Applications, 2013, 40, 2807-2816.	7.6	10
78	Machine learning techniques to predict different levels of hospital care of CoVid-19. Applied Intelligence, 2022, 52, 6413-6431.	5. 3	10
79	Applying statistical, uncertainty-based and connectionist approaches to the prediction of fetal outcome: a comparative study. Artificial Intelligence in Medicine, 1999, 17, 37-57.	6.5	9
80	A measure of fault tolerance for functional networks. Neurocomputing, 2004, 62, 327-347.	5.9	9
81	Exploring the consequences of distributed feature selection in DNA microarray data. , 2017, , .		9
82	Optimizing novelty and diversity in recommendations. Progress in Artificial Intelligence, 2019, 8, 101-109.	2.4	9
83	A scalable saliency-based feature selection method with instance-level information. Knowledge-Based Systems, 2020, 192, 105326.	7.1	9
84	Fast anomaly detection with locality-sensitive hashing and hyperparameter autotuning. Information Sciences, 2022, 607, 1245-1264.	6.9	9
85	A Snort-based agent for a JADE multi-agent intrusion detection system. International Journal of Intelligent Information and Database Systems, 2009, 3, 107.	0.3	8
86	Stream change detection via passive-aggressive classification and Bernoulli CUSUM. Information Sciences, 2015, 305, 130-145.	6.9	8
87	A Distributed Feature Selection Approach Based on a Complexity Measure. Lecture Notes in Computer Science, 2015, , 15-28.	1.3	8
88	Testing Scenarios to Achieve Workplace Sustainability Goals Using Backcasting and Agent-Based Modeling. Environment and Behavior, 2017, 49, 1007-1037.	4.7	8
89	Insights into distributed feature ranking. Information Sciences, 2019, 496, 378-398.	6.9	8
90	How important is data quality? Best classifiers vs best features. Neurocomputing, 2022, 470, 365-375.	5.9	8

#	Article	IF	CITATIONS
91	Developing an electrical distribution monitoring system. IEEE Computer Applications in Power, 1997, 10, 36-41.	0.2	7
92	Multiclass classifiers vs multiple binary classifiers using filters for feature selection. , 2010, , .		7
93	Combining Feature Selection and Local Modelling in the KDD Cup 99 Dataset. Lecture Notes in Computer Science, 2009, , 824-833.	1.3	7
94	Fast Distributed <i>k</i> NN Graph Construction Using Auto-tuned Locality-sensitive Hashing. ACM Transactions on Intelligent Systems and Technology, 2020, 11, 1-18.	4.5	7
95	Uncertainty Based Approach for Symbolic Classification of Numeric Variables in Intensive Care Units. Journal of Clinical Engineering, 1990, 15, 361-370.	0.1	6
96	Foundations of Feature Selection. The Artificial Intelligence: Foundationsory, and Algorithms, 2015, , 13-28.	0.4	6
97	An insight on complexity measures and classification in microarray data. , 2015, , .		6
98	Feature selection with limited bit depth mutual information for portable embedded systems. Knowledge-Based Systems, 2020, 197, 105885.	7.1	6
99	Symbolic, Neural and Neuro-fuzzy Approaches to Pattern Recognition in Cardiotocograms. International Series in Intelligent Technologies, 2002, , 489-500.	0.1	6
100	A Time Efficient Approach for Distributed Feature Selection Partitioning by Features. Lecture Notes in Computer Science, 2015, , 245-254.	1.3	5
101	Empirically-Derived Behavioral Rules in Agent-Based Models Using Decision Trees Learned from Questionnaire Data. Understanding Complex Systems, 2017, , 53-76.	0.6	5
102	Evaluation of Ensembles for Feature Selection. Intelligent Systems Reference Library, 2018, , 97-113.	1.2	5
103	Feature Selection Based on Sensitivity Analysis. Lecture Notes in Computer Science, 2007, , 239-248.	1.3	5
104	Fault Prognosis of Mechanical Components Using On-Line Learning Neural Networks. Lecture Notes in Computer Science, 2010, , 60-66.	1.3	5
105	Automatic unit for monitoring and diagnosis with the contraction stress test. Medical and Biological Engineering and Computing, 1988, 26, 410-415.	2.8	4
106	Implementing cognitive procedures in diagnostic processes. , 0, , .		4
107	PATRICIA: An expert system that incorporates a patient-oriented approach for the management of ICU patients. , 1992, , .		4
108	A new supervised local modelling classifier based on information theory. , 2009, , .		4

#	Article	IF	CITATIONS
109	On the behavior of feature selection methods dealing with noise and relevance over synthetic scenarios., 2011,,.		4
110	A Minimum Volume Covering Approach with a Set of Ellipsoids. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35, 2997-3009.	13.9	4
111	A Critical Review of Feature Selection Methods. The Artificial Intelligence: Foundationsory, and Algorithms, 2015, , 29-60.	0.4	4
112	On the use of different base classifiers in multiclass problems. Progress in Artificial Intelligence, 2017, 6, 315-323.	2.4	4
113	Volume, variety and velocity in Data Science. Knowledge-Based Systems, 2017, 117, 1-2.	7.1	4
114	Dealing with heterogeneity in the context of distributed feature selection for classification. Knowledge and Information Systems, 2021, 63, 233-276.	3.2	4
115	Functional Networks and Analysis of Variance for Feature Selection. Lecture Notes in Computer Science, 2006, , 1031-1038.	1.3	4
116	A Misuse Detection Agent for Intrusion Detection in a Multi-agent Architecture. Lecture Notes in Computer Science, 2007, , 466-475.	1.3	4
117	Feature Selection: FromÂtheÂPast toÂtheÂFuture. Learning and Analytics in Intelligent Systems, 2022, , 11-34.	0.6	4
118	Anomaly Detection on Natural Language Processing to Improve Predictions on Tourist Preferences. Electronics (Switzerland), 2022, 11, 779.	3.1	4
119	NST expert: an intelligent program for NST interpretation. , 0, , .		3
120	A connectionist approach to predict antenatal outcome. , 1992, , .		3
121	Accurate initialization of neural network weights by backpropagation of the desired response. , 0, , .		3
122	A tool for agent communication in Mozart/Oz., 0,,.		3
123	Interferential Tear Film Lipid Layer Classification: An Automatic Dry Eye Test., 2012,,.		3
124	Information Theoretic Learning and local modeling for binary and multiclass classification. Progress in Artificial Intelligence, 2012, 1, 315-328.	2.4	3
125	Real-Time Tear Film Classification Through Cost-Based Feature Selection. Lecture Notes in Computer Science, 2015, , 78-98.	1.3	3
126	Distributed classification based on distances between probability distributions in feature space. Information Sciences, 2019, 496, 431-450.	6.9	3

#	Article	IF	CITATIONS
127	Local Modeling Using Self-Organizing Maps and Single Layer Neural Networks. Lecture Notes in Computer Science, 2002, , 945-950.	1.3	3
128	Scalability Analysis of ANN Training Algorithms with Feature Selection. Lecture Notes in Computer Science, 2011, , 84-93.	1.3	3
129	Up-to-Date Feature Selection Methods for Scalable and Efficient Machine Learning. , 2013, , 1-26.		3
130	An Ergonomic Display for Maternal-Fetal Monitoring During Labor. Journal of Clinical Engineering, 1989, 14, 479-486.	0.1	2
131	Implementing Uncertainty-based Prognostic Structures In NST-EXPERT. , 0, , .		2
132	Automated Analog-to-Digital Conversion of Graphical Cardiotocographic Records. Journal of Clinical Engineering, 1995, 20, 57-65.	0.1	2
133	A hybrid intelligent system for the pre-processing of Fetal Heart rate signals in antenatal testing. Lecture Notes in Computer Science, 1997, , 628-633.	1.3	2
134	EECB: a knowledge elicitation tool based on repertory grid and city block metric. Expert Systems With Applications, 1998, 14, 249-258.	7.6	2
135	Combining functional networks and sensitivity analysis as wrapper method for feature selection. Expert Systems With Applications, 2011, 38, 12930-12938.	7.6	2
136	Preprocessing in High Dimensional Datasets. Intelligent Systems Reference Library, 2018, , 247-271.	1.2	2
137	An Agent-Based Prototype for Enhancing Sustainability Behavior at an Academic Environment. Advances in Intelligent and Soft Computing, 2012, , 257-264.	0.2	2
138	Intelligent Monitoring and Symbolic Representation of Clinical Knowledge: An Application in Acute Ventilatory Management., 1992,, 39-45.		2
139	A new learning method for single layer neural networks based on a regularized cost function. Lecture Notes in Computer Science, 2003, , 270-277.	1.3	2
140	Exact Incremental Learning for a Single Non-linear Neuron Based on Taylor Expansion and Greville Formula. Lecture Notes in Computer Science, 2013, , 149-158.	1.3	2
141	Feature Selection. Intelligent Systems Reference Library, 2018, , 13-37.	1.2	2
142	Obstetrical Decision-riaking Based On Predictive Expert Analysis. , 0, , .		1
143	Local Modeling Classifier for Microarray Gene-Expression Data. Lecture Notes in Computer Science, 2010, , 11-20.	1.3	1
144	Toward an ensemble of filters for classification. , 2011, , .		1

#	Article	IF	CITATIONS
145	Paving the way for providing teaching feedback in automatic evaluation of open response assignments. , 2017, , .		1
146	Feature Selection Applied to Microarray Data. Methods in Molecular Biology, 2019, 1986, 123-152.	0.9	1
147	Wavefront Marching Methods: A Unified Algorithm to Solve Eikonal and Static Hamilton-Jacobi Equations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 4177-4188.	13.9	1
148	A delayed Elastic-Net approach for performing adversarial attacks., 2021,,.		1
149	Designing Decision Trees for Representing Sustainable Behaviours in Agents. Advances in Intelligent Systems and Computing, 2015, , 169-176.	0.6	1
150	Selection of the Best Base Classifier in One-Versus-One Using Data Complexity Measures. Lecture Notes in Computer Science, 2016, , 110-120.	1.3	1
151	An Improved Version of the Wrapper Feature Selection Method Based on Functional Decomposition. Lecture Notes in Computer Science, 2007, , 240-249.	1.3	1
152	A Decision-Making Model for Environmental Behavior in Agent-Based Modeling. Lecture Notes in Computer Science, 2013, , 152-160.	1.3	1
153	A Bayesian Neural Network Approach for Sleep Apnea Classification. Lecture Notes in Computer Science, 2003, , 284-293.	1.3	1
154	Recovering Missing Data with Functional and Bayesian Networks. Lecture Notes in Computer Science, 2003, , 489-496.	1.3	1
155	A Log Analyzer Agent for Intrusion Detection in a Multi-Agent System. Lecture Notes in Computer Science, 2010, , 168-177.	1.3	1
156	Ensembles for Feature Selection. Intelligent Systems Reference Library, 2018, , 53-81.	1.2	1
157	When Size Matters: Markov Blanket with Limited Bit Depth Conditional Mutual Information. Communications in Computer and Information Science, 2020, , 243-255.	0.5	1
158	Symbolic processing in intelligent monitoring. , 0, , .		0
159	Knowledge Representation In NST-expert. , 0, , .		0
160	Computers In ICU Monitoring: An Intelligent Method. , 0, , .		0
161	Special issue on medical applications of expert systems. Expert Systems With Applications, 1993, 6, 397.	7.6	O
162	A temporal strategy for intelligent patient monitoring in the intensive care units., 0,,.		0

#	Article	IF	Citations
163	VISC: cardiotocographic signals visualization system. , 0, , .		O
164	Computerized simulation of human walking on the sagittal plane., 0,,.		O
165	A comparative analysis of the neonatal prognosis problem using artificial neural networks, statistical techniques and certainty management techniques. Lecture Notes in Computer Science, 1997, , 995-1004.	1.3	0
166	A hybrid intelligent-classical approach for the segmentation of digital images of burned patients. , 0, , .		O
167	Modelling Engineering Problems Using Dimensional Analysis for Feature Extraction. Lecture Notes in Computer Science, 2005, , 949-954.	1.3	0
168	An Add-On for Managing Behaviours with Priority in JADE. , 2006, , .		O
169	Interactions Matter: Modelling Everyday Pro-environmental Norm Transmission and Diffusion in Workplace Networks. Understanding Complex Systems, 2017, , 27-52.	0.6	O
170	Emerging Challenges. Intelligent Systems Reference Library, 2018, , 173-205.	1.2	O
171	Foundations of Ensemble Learning. Intelligent Systems Reference Library, 2018, , 39-51.	1.2	O
172	P3819Machine learning for predicting early left ventricular abnormalities in the general population. European Heart Journal, 2019, 40, .	2.2	O
173	Can data placement be effective for Neural Networks classification tasks? Introducing the Orthogonal Loss. , 2021, , .		О
174	Generating a Synthetic Population of Agents Through Decision Trees and Socio Demographic Data. Lecture Notes in Computer Science, 2021, , 128-140.	1.3	0
175	An Auto-learning System for the Classification of Fetal Heart Rate Decelerative Patterns. Lecture Notes in Computer Science, 2001, , 393-400.	1.3	O
176	A Fast Classification Algorithm Based on Local Models. Lecture Notes in Computer Science, 2006, , 249-256.	1.3	0
177	A JADE-Based Framework for Developing Evolutionary Multi-Agent Systems. Advances in Intelligent and Soft Computing, 2009, , 339-348.	0.2	O
178	Feature Selection and Conversion Methods in KDD Cup 99 Dataset: A Comparison of Performance. , 2010, , .		0
179	Software Tools. Intelligent Systems Reference Library, 2018, , 157-171.	1.2	O
180	Other Ensemble Approaches. Intelligent Systems Reference Library, 2018, , 115-138.	1.2	O

#	ARTICLE	IF	CITATIONS
181	Applications of Ensembles Versus Traditional Approaches: Experimental Results. Intelligent Systems Reference Library, 2018, , 139-156.	1.2	O
182	Combination of Outputs. Intelligent Systems Reference Library, 2018, , 83-96.	1.2	0
183	A Comparative Study of Local Classifiers Based on Clustering Techniques and One-Layer Neural Networks. , 2007, , 168-177.		O
184	Low-precision feature selection on microarray data: an information theoretic approach. Medical and Biological Engineering and Computing, 2022, 60, 1333.	2.8	0