Carlos Sotelo-Vazquez

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/7635857/carlos-sotelo-vazquez-publications-by-citations.pdf$

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

26 864 14 27 g-index

27 g-index

27 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
26	Photo-induced enhanced Raman spectroscopy for universal ultra-trace detection of explosives, pollutants and biomolecules. <i>Nature Communications</i> , 2016 , 7, 12189	17.4	143
25	Where Do Photogenerated Holes Go in Anatase:Rutile TiO2? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 715-23	2.8	101
24	Multifunctional P-Doped TiO2 Films: A New Approach to Self-Cleaning, Transparent Conducting Oxide Materials. <i>Chemistry of Materials</i> , 2015 , 27, 3234-3242	9.6	92
23	Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO2 Photoanode: A Rate Law Analysis. <i>ACS Catalysis</i> , 2017 , 7, 4896-4903	13.1	76
22	Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study. <i>Advanced Functional Materials</i> , 2017 , 27, 1605413	15.6	76
21	Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 5983-5993	3.8	57
20	Enhanced Photocatalytic and Antibacterial Ability of Cu-Doped Anatase TiO Thin Films: Theory and Experiment. <i>ACS Applied Materials & Doped Anatase</i> , 2020 , 12, 15348-15361	9.5	49
19	Chemical Vapor Deposition of Photocatalytically Active Pure Brookite TiO2 Thin Films. <i>Chemistry of Materials</i> , 2018 , 30, 1353-1361	9.6	43
18	Critical influence of surface nitrogen species on the activity of N-doped TiO2 thin-films during photodegradation of stearic acid under UV light irradiation. <i>Applied Catalysis B: Environmental</i> , 2014 , 160-161, 582-588	21.8	40
17	Photocatalytic Evidence of the Rutile-to-Anatase Electron Transfer in Titania. <i>Advanced Materials Interfaces</i> , 2014 , 1, 1400069	4.6	36
16	ZnO Rods with Exposed {100} Facets Grown via a Self-Catalyzed Vapor-Solid Mechanism and Their Photocatalytic and Gas Sensing Properties. <i>ACS Applied Materials & Description</i> (1988) 1883 (1988) 1983	. 2 9.5	34
15	On the apparent visible-light and enhanced UV-light photocatalytic activity of nitrogen-doped TiO2 thin films. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2017 , 333, 49-55	4.7	26
14	Interstitial boron-doped anatase TiO2 thin-films on optical fibres: atmospheric pressure-plasma enhanced chemical vapour deposition as the key for functional oxide coatings on temperature-sensitive substrates. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10836-10842	13	17
13	Correlation of Optical Properties, Electronic Structure, and Photocatalytic Activity in Nanostructured Tungsten Oxide. <i>Advanced Materials Interfaces</i> , 2017 , 4, 1700064	4.6	15
12	Functionalised gold and titania nanoparticles and surfaces for use as antimicrobial coatings. <i>Faraday Discussions</i> , 2014 , 175, 273-87	3.6	14
11	Ultraviolet Radiation Induced Dopant Loss in a TiO2 Photocatalyst. <i>ACS Catalysis</i> , 2017 , 7, 1485-1490	13.1	13
10	Charge Transport Phenomena in Heterojunction Photocatalysts: The WO/TiO System as an Archetypical Model. <i>ACS Applied Materials & Samp; Interfaces</i> , 2021 , 13, 9781-9793	9.5	8

LIST OF PUBLICATIONS

9	Deeper Understanding of Interstitial Boron-Doped Anatase Thin Films as A Multifunctional Layer Through Theory and Experiment. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 714-726	3.8	5	
8	Single-step synthesis of doped TiO2 stratified thin-films by atmospheric-pressure chemical vapour deposition. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 7082	13	5	
7	Multiple diffusion pathways in LixNi0.77Co0.14Al0.09O2 (NCA) Li-ion battery cathodes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 11545-11552	13	3	
6	Iron-Intercalated Zirconium Diselenide Thin Films from the Low-Pressure Chemical Vapor Deposition of [Fe(ECHSe)Zr(ECH)]. <i>ACS Omega</i> , 2020 , 5, 15799-15804	3.9	3	
5	Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 18859-18867	3.8	3	
4	Photocatalysis: Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study (Adv. Funct. Mater. 18/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1	
3	Dopant stability in multifunctional doped TiO2 th under environmental UVA exposure. <i>Environmental Science: Nano</i> , 2017 , 4, 1108-1113	7.1	1	
2	Accessing new 2D semiconductors with optical band gap: synthesis of iron-intercalated titanium diselenide thin films LPCVD <i>RSC Advances</i> , 2018 , 8, 22552-22558	3.7	1	
1	Stoichiometrically driven disorder and local diffusion in NMC cathodes. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 10477-10486	13	1	