Ligia Salgueiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7635563/publications.pdf Version: 2024-02-01

LICIA SALCHEIRO

#	Article	IF	CITATIONS
1	Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 2009, 58, 1454-1462.	0.7	523
2	Antifungal activity of Thymus oils and their major compounds. Journal of the European Academy of Dermatology and Venereology, 2004, 18, 73-78.	1.3	308
3	Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 2006, 55, 1367-1373.	0.7	249
4	Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains. Journal of Applied Microbiology, 2006, 100, 1333-1338.	1.4	165
5	Anti-inflammatory and Chondroprotective Activity of (+)-α-Pinene: Structural and Enantiomeric Selectivity. Journal of Natural Products, 2014, 77, 264-269.	1.5	162
6	Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. European Journal of Pharmacology, 2015, 750, 141-150.	1.7	154
7	Helichrysum italicum: From traditional use to scientific data. Journal of Ethnopharmacology, 2014, 151, 54-65.	2.0	126
8	Essential oil of Daucus carota subsp. halophilus: Composition, antifungal activity and cytotoxicity. Journal of Ethnopharmacology, 2008, 119, 129-134.	2.0	124
9	Portuguese Thymbra and Thymus Species Volatiles: Chemical Composition and Biological Activities. Current Pharmaceutical Design, 2008, 14, 3120-3140.	0.9	124
10	Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Hér Journal of Medical Microbiology, 2011, 60, 612-618.	0.7	113
11	Essential Oil of Common Sage (<i>Salvia officinalis</i> L.) from Jordan: Assessment of Safety in Mammalian Cells and Its Antifungal and Anti-Inflammatory Potential. BioMed Research International, 2013, 2013, 1-9.	0.9	105
12	Composition of the Essential Oils ofOcimum canum,O. gratissimumandO. minimum. Planta Medica, 1999, 65, 187-189.	0.7	102
13	Antifungal, antioxidant and anti-inflammatory activities of Oenanthe crocata L. essential oil. Food and Chemical Toxicology, 2013, 62, 349-354.	1.8	99
14	Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Industrial Crops and Products, 2010, 32, 580-587.	2.5	95
15	Essential Oil Composition and Antimicrobial Activity of Three Zingiberaceae from S.Tomé e PrÃncipe. Planta Medica, 2001, 67, 580-584.	0.7	94
16	Monoterpenic aldehydes as potential anti-Leishmania agents: Activity of Cymbopogon citratus and citral on L. infantum, L. tropica and L. major. Experimental Parasitology, 2012, 130, 223-231.	0.5	94
17	Anti-Giardia activity of Syzygium aromaticum essential oil and eugenol: Effects on growth, viability, adherence and ultrastructure. Experimental Parasitology, 2011, 127, 732-739.	0.5	92
18	Raw materials: the importance of quality and safety. A review Flavour and Fragrance Journal, 2010, 25, 253-271.	1.2	90

#	Article	IF	CITATIONS
19	Chemical characterization and biological activity of essential oils from Daucus carota L. subsp. carota growing wild on the Mediterranean coast and on the Atlantic coast. FA¬toterapA¬A¢, 2009, 80, 57-61.	1.1	88
20	Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control, 2017, 80, 273-280.	2.8	88
21	Antifungal and anti-inflammatory potential of Lavandula stoechas and Thymus herba-barona essential oils. Industrial Crops and Products, 2013, 44, 97-103.	2.5	86
22	Essential oils from four Piper species. Phytochemistry, 1998, 49, 2019-2023.	1.4	81
23	In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Industrial Crops and Products, 2007, 26, 135-141.	2.5	81
24	Chemical Composition and Antifungal Activity of the Essential Oils of <i>Lavandula pedunculata</i> (<scp>Miller</scp>) <scp>Cav</scp> Chemistry and Biodiversity, 2009, 6, 1283-1292.	1.0	74
25	Thymus spp. plants - Food applications and phytopharmacy properties. Trends in Food Science and Technology, 2019, 85, 287-306.	7.8	74
26	Chemical Composition and Antifungal Activity of the Essential Oil ofThymbra capitata. Planta Medica, 2004, 70, 572-575.	0.7	71
27	Analysis by gas chromatography–mass spectrometry of the volatile components of Teucrium lusitanicum and Teucrium algarbiensis. Journal of Chromatography A, 2004, 1033, 187-190.	1.8	70
28	Anti-Giardia activity of phenolic-rich essential oils: effects of Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure. Parasitology Research, 2010, 106, 1205-1215.	0.6	67
29	Lavandula luisieri essential oil as a source of antifungal drugs. Food Chemistry, 2012, 135, 1505-1510.	4.2	67
30	North African Medicinal Plants Traditionally Used in Cancer Therapy. Frontiers in Pharmacology, 2017, 8, 383.	1.6	67
31	Olive oil flavoured by the essential oils of Mentha × piperita and Thymus mastichina L Food Quality and Preference, 2004, 15, 447-452.	2.3	66
32	Antifungal activity of phenolic-rich Lavandula multifida L. essential oil. European Journal of Clinical Microbiology and Infectious Diseases, 2012, 31, 1359-1366.	1.3	66
33	<i>Ficus</i> plants: State of the art from a phytochemical, pharmacological, and toxicological perspective. Phytotherapy Research, 2021, 35, 1187-1217.	2.8	65
34	Chemical polymorphism of the essential oil of Thymus carnosus from portugalâ~†. Phytochemistry, 1995, 38, 391-396.	1.4	63
35	Antimicrobial Activity and Chemical Composition of the Essential Oil of Lippia graveolens from Guatemala. Planta Medica, 2003, 69, 80-83.	0.7	63
36	Analysis ofJuniperus communis subsp.alpina needle, berry, wood and root oils by combination of GC, GC/MS and13C-NMR. Flavour and Fragrance Journal, 2006, 21, 99-106.	1.2	63

#	Article	IF	CITATIONS
37	Antifungal activity of Ferulago capillaris essential oil against Candida, Cryptococcus, Aspergillus and dermatophyte species. European Journal of Clinical Microbiology and Infectious Diseases, 2013, 32, 1311-1320.	1.3	62
38	Natural Products: An Alternative to Conventional Therapy for Dermatophytosis?. Mycopathologia, 2017, 182, 143-167.	1.3	60
39	The anti-Candida activity of Thymbra capitata essential oil: Effect upon pre-formed biofilm. Journal of Ethnopharmacology, 2012, 140, 379-383.	2.0	59
40	Chemical, antifungal and cytotoxic evaluation of the essential oil of Thymus zygis subsp. sylvestris. Industrial Crops and Products, 2010, 32, 70-75.	2.5	57
41	Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of Jordan. Journal of Ethnopharmacology, 2016, 191, 161-168.	2.0	56
42	Intraspecific chemical variability of the leaf essential oil of Juniperus phoenicea subsp. turbinata from Corsica. Biochemical Systematics and Ecology, 2001, 29, 179-188.	0.6	54
43	Artemisia herba-alba essential oil from Buseirah (South Jordan): Chemical characterization and assessment of safe antifungal and anti-inflammatory doses. Journal of Ethnopharmacology, 2015, 174, 153-160.	2.0	54
44	Anti-Candida Activity of Essential Oils. Mini-Reviews in Medicinal Chemistry, 2009, 9, 1292-1305.	1.1	53
45	Correlation of the chemical composition of essential oils from Origanum vulgare subsp. virens with their in vitro activity against pathogenic yeasts and filamentous fungi. Journal of Medical Microbiology, 2012, 61, 252-260.	0.7	53
46	Myrtus communis L. as source of a bioactive and safe essential oil. Food and Chemical Toxicology, 2015, 75, 166-172.	1.8	53
47	Chemical Composition and Antifungal Activity of the Essential Oil ofOriganum virensonCandidaSpecies. Planta Medica, 2003, 69, 871-874.	0.7	51
48	Composition and biological activity of the essential oil from Thapsia minor, a new source of geranyl acetate. Industrial Crops and Products, 2012, 35, 166-171.	2.5	51
49	Essential Oils Chemistry. , 2015, , 19-61.		51
50	Variability of essential oils of Thymus caespititius from portugal. Phytochemistry, 1997, 45, 307-311.	1.4	50
51	Antimicrobial Activity and Chemical Composition of the Bark Oil ofCroton stellulifer, an Endemic Species from S. Tomé e PrÃncipe. Planta Medica, 2000, 66, 647-650.	0.7	48
52	Essential Oil Composition of <i>Eryngium foetidum</i> from S. Tomé e PrÃncipe. Journal of Essential Oil Research, 2003, 15, 93-95.	1.3	48
53	Activity of Thymus capitellatus volatile extract, 1,8-cineole and borneol against Leishmania species. Veterinary Parasitology, 2014, 200, 39-49.	0.7	48
54	Composition and variability of the essential oils of Thymus species from section Mastichina from Portugal. Biochemical Systematics and Ecology, 1997, 25, 659-672.	0.6	47

#	Article	IF	CITATIONS
55	Antifungal Activity of the Essential Oil of <i>Thymus</i> x <i>viciosoi</i> against <i>Candida, Cryptococcus, Aspergillus</i> and Dermatophyte Species. Planta Medica, 2010, 76, 882-888.	0.7	47
56	Essential oils from Distichoselinum tenuifolium: Chemical composition, cytotoxicity, antifungal and anti-inflammatory properties. Journal of Ethnopharmacology, 2010, 130, 593-598.	2.0	47
57	Antifungal activity of the essential oil of Angelica major against Candida, Cryptococcus, Aspergillus and dermatophyte species. Journal of Natural Medicines, 2015, 69, 241-248.	1.1	47
58	Chemical composition and antibacterial activity of <i>Lavandula coronopifolia</i> essential oil against antibiotic-resistant bacteria. Natural Product Research, 2015, 29, 582-585.	1.0	46
59	Chemical Composition and Antifungal Activity of Essential Oils and Supercritical CO2 Extracts of Apium nodiflorum (L.) Lag Mycopathologia, 2012, 174, 61-67.	1.3	44
60	Antifungal Activity of Thapsia villosa Essential Oil against Candida, Cryptococcus, Malassezia, Aspergillus and Dermatophyte Species. Molecules, 2017, 22, 1595.	1.7	44
61	Ocimum tenuiflorum L. and Ocimum basilicum L., two spices of Lamiaceae family with bioactive essential oils. Industrial Crops and Products, 2018, 113, 89-97.	2.5	43
62	Micromorphology of trichomes and composition of essential oil ofTeucrium capitatum. Flavour and Fragrance Journal, 2004, 19, 336-340.	1.2	42
63	Effects of Essential Oils from Eucalyptus globulus Leaves on Soil Organisms Involved in Leaf Degradation. PLoS ONE, 2013, 8, e61233.	1.1	42
64	Chemical polymorphism of the essential oils from populations of Thymus caespititius grown on the island S. Jorge (Azores). Phytochemistry, 2000, 55, 241-246.	1.4	41
65	Composition and infraspecific variability of essential oil from Thymus camphoratus. Phytochemistry, 1997, 45, 1177-1183.	1.4	39
66	Essential oil ofDittrichia viscosa ssp.viscosa: analysis by13C-NMR and antimicrobial activity. Flavour and Fragrance Journal, 2006, 21, 324-332.	1.2	39
67	Chemical composition of Crithmum maritimum L. essential oil and hydrodistillation residual water by GC-MS and HPLC-DAD-MS/MS, and their biological activities. Industrial Crops and Products, 2020, 149, 112329.	2.5	39
68	Screening of Five Essential Oils for Identification of Potential Inhibitors of IL-1-induced Nf- <i>Îe</i> B Activation and NO Production in Human Chondrocytes: Characterization of the Inhibitory Activity of <i>α</i> -Pinene. Planta Medica, 2010, 76, 303-308.	0.7	38
69	Antifungal activity of the essential oil of Thymus villosus subsp. lusitanicus against Candida, Cryptococcus, Aspergillus and dermatophyte species. Industrial Crops and Products, 2013, 51, 93-99.	2.5	38
70	Antifungal activity of essential oil from <i>Mentha spicata</i> L. and <i>Mentha pulegium</i> L. growing wild in Sardinia island (Italy). Natural Product Research, 2021, 35, 993-999.	1.0	38
71	Somatic embryogenesis in tamarillo (Cyphomandra betacea): approaches to increase efficiency of embryo formation and plant development. Plant Cell, Tissue and Organ Culture, 2012, 109, 143-152.	1.2	37
72	Infraspecific chemical variability of the leaf essential oil of Juniperus phoenicea var. turbinata from Portugal. Biochemical Systematics and Ecology, 2001, 29, 1175-1183.	0.6	36

#	Article	IF	CITATIONS
73	Composition and antifungal activity of the essential oil ofMentha cervinafrom Portugal. Natural Product Research, 2007, 21, 867-871.	1.0	36
74	Chemical composition and biological assays of essential oils of <i>Calamintha nepeta</i> (L.) Savi subsp. <i>nepeta</i> (Lamiaceae). Natural Product Research, 2010, 24, 1734-1742.	1.0	36
75	Essential Oil of <i>Juniperus communis</i> subsp. <i>alpina</i> (Suter) ÄŒelak Needles: Chemical Composition, Antifungal Activity and Cytotoxicity. Phytotherapy Research, 2012, 26, 1352-1357.	2.8	35
76	Activity of essential oils on the growth of <i>Leishmania infantum</i> promastigotes. Flavour and Fragrance Journal, 2010, 25, 156-160.	1.2	33
77	New insights on the anti-inflammatory potential and safety profile of Thymus carnosus and Thymus camphoratus essential oils and their main compounds. Journal of Ethnopharmacology, 2018, 225, 10-17.	2.0	33
78	Composition of the essential oil ofJuniperus cedrus Webb & Berth. grown on Madeira. Flavour and Fragrance Journal, 2002, 17, 111-114.	1.2	30
79	Isolation of the volatile fraction from <i> Apium graveolens</i> L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: Chemical composition and antifungal activity. Natural Product Research, 2013, 27, 1521-1527.	1.0	30
80	Calendula L. species polyphenolic profile and in vitro antifungal activity. Journal of Functional Foods, 2018, 45, 254-267.	1.6	30
81	Composition of the essential oil and micromorphology of trichomes ofTeucrium salviastrum, an endemic species from Portugal. Flavour and Fragrance Journal, 2002, 17, 287-291.	1.2	29
82	Unveiling the Antifungal Potential of Two Iberian Thyme Essential Oils: Effect on C. albicans Germ Tube and Preformed Biofilms. Frontiers in Pharmacology, 2019, 10, 446.	1.6	29
83	Chemical composition, anti-inflammatory activity and cytotoxicity of Thymus zygis L. subsp. sylvestris (Hoffmanns. & Link) Cout. essential oil and its main compounds. Arabian Journal of Chemistry, 2019, 12, 3236-3243.	2.3	29
84	Protective Effects of Terpenes on the Cardiovascular System: Current Advances and Future Perspectives. Current Medicinal Chemistry, 2016, 23, 4559-4600.	1.2	29
85	Chemical variability ofJuniperus oxycedrus ssp.oxycedrus berry and leaf oils from Corsica, analysed by combination of GC, GC–MS and13C-NMR. Flavour and Fragrance Journal, 2006, 21, 268-273.	1.2	28
86	Isolation of <i>Crithmum maritimum</i> L. volatile oil by supercritical carbon dioxide extraction and biological assays. Natural Product Research, 2007, 21, 1145-1150.	1.0	28
87	Essential Oil Composition and Antimicrobial Activity of Santiria trimera Bark. Planta Medica, 2003, 69, 77-79.	0.7	27
88	Composition of a volatile extract of Eryngium duriaei subsp. juresianum (M. LaÃnz) M. LaÃnz, signalised by the antifungal activity. Journal of Pharmaceutical and Biomedical Analysis, 2011, 54, 619-622.	1.4	27
89	New Claims for Wild Carrot (<i>Daucus carota</i> subsp. <i>carota</i>) Essential Oil. Evidence-based Complementary and Alternative Medicine, 2016, 2016, 1-10.	0.5	27
90	Chemical polymorphism of populations of Thymus caespititius grown on the islands Corvo, Flores, São Miguel and Terceira (Azores) and on Madeira, assessed by analysis of their essential oils. Plant Science, 2005, 169, 1112-1117.	1.7	26

#	Article	IF	CITATIONS
91	Susceptibility of <i>Helicobacter pylori</i> to essential oil of <i>Dittrichia viscosa</i> subsp. <i>revoluta</i> . Phytotherapy Research, 2008, 22, 259-263.	2.8	26
92	New compounds, chemical composition, antifungal activity and cytotoxicity of the essential oil from Myrtus nivellei Batt. & Trab., an endemic species of Central Sahara. Journal of Ethnopharmacology, 2013, 149, 613-620.	2.0	26
93	Antifungal activity of the essential oil ofThymus capitellatus againstCandida, Aspergillus and dermatophyte strains. Flavour and Fragrance Journal, 2006, 21, 749-753.	1.2	25
94	The Genus <i>Myrtus</i> L. in Algeria: Composition and Biological Aspects of Essential Oils from <i>M. communis</i> and <i>M. nivellei</i> : A Review. Chemistry and Biodiversity, 2016, 13, 672-680.	1.0	25
95	Chemotaxonomic study on Thymus villosus from Portugal. Biochemical Systematics and Ecology, 2000, 28, 471-482.	0.6	24
96	Essential oil composition and variability of Thymus lotocephalus and Thymus×mourae. Biochemical Systematics and Ecology, 2000, 28, 457-470.	0.6	23
97	A necrodane monoterpenoid from <i>Lavandula luisieri</i> essential oil as a cellâ€permeable inhibitor of BACEâ€1, the <i>β</i> â€secretase in Alzheimer's disease. Flavour and Fragrance Journal, 2013, 28, 380-388.	1.2	23
98	<i>Thymbra capitata</i> essential oil as potential therapeutic agent against <i>Gardnerella vaginalis</i> biofilm-related infections. Future Microbiology, 2017, 12, 407-416.	1.0	23
99	Chemical Composition and Effect against Skin Alterations of Bioactive Extracts Obtained by the Hydrodistillation of Eucalyptus globulus Leaves. Pharmaceutics, 2022, 14, 561.	2.0	23
100	Composition and variability of the essential oils of the leaves and berries from Juniperus navicularis. Biochemical Systematics and Ecology, 2003, 31, 193-201.	0.6	21
101	Composition, antifungal activity and cytotoxicity of the essential oils of Seseli tortuosum L. and Seseli montanum subsp. peixotoanum (Samp.) M. LaÃnz from Portugal. Industrial Crops and Products, 2012, 39, 204-209.	2.5	21
102	Synergistic effects of carvacrol, α-terpinene, γ-terpinene, ϕcymene and linalool against Gardnerella species. Scientific Reports, 2022, 12, 4417.	1.6	21
103	Chemotaxonomic characterization of aThymus hybrid from Portugal. Flavour and Fragrance Journal, 1993, 8, 325-330.	1.2	20
104	In vitro susceptibility of Trypanosoma brucei brucei to selected essential oils and their major components. Experimental Parasitology, 2018, 190, 34-40.	0.5	20
105	Chemical polymorphism of the essential oils from populations ofThymus caespititius grown on the islands Pico, Faial and Graciosa (Azores). Phytochemical Analysis, 2003, 14, 228-231.	1.2	19
106	Activity of Thymus caespititius essential oil and α-terpineol against yeasts and filamentous fungi. Industrial Crops and Products, 2014, 62, 107-112.	2.5	19
107	Chemical composition and antifungal activity of supercritical extract and essential oil of <i>Tanacetum vulgare</i> growing wild in Lithuania. Natural Product Research, 2014, 28, 1906-1909.	1.0	18
108	Dose-Dependent Inhibition of BACE-1 by the Monoterpenoid 2,3,4,4-Tetramethyl-5-methylenecyclopent-2-enone in Cellular and Mouse Models of Alzheimer's Disease. Journal of Natural Products, 2014, 77, 1275-1279.	1.5	18

#	Article	IF	CITATIONS
109	Daucus carota subsp. gummifer essential oil as a natural source of antifungal and anti-inflammatory drugs. Industrial Crops and Products, 2015, 65, 361-366.	2.5	18
110	Chemical characterization and bioactivity of phytochemicals from Iberian endemic Santolina semidentata and strategies for ex situ propagation. Industrial Crops and Products, 2015, 74, 505-513.	2.5	18
111	Ziziphora tenuior L. essential oil from Dana Biosphere Reserve (Southern Jordan); Chemical characterization and assessment of biological activities. Journal of Ethnopharmacology, 2016, 194, 963-970.	2.0	18
112	The Role of Essential Oils and Their Main Compounds in the Management of Cardiovascular Disease Risk Factors. Molecules, 2021, 26, 3506.	1.7	18
113	Are Plant Extracts a Potential Therapeutic Approach for Genital Infections?. Current Medicinal Chemistry, 2013, 20, 2914-2928.	1.2	18
114	Association of <i>Thymbra capitata</i> essential oil and chitosan (TCCH hydrogel): a putative therapeutic tool for the treatment of vulvovaginal candidosis. Flavour and Fragrance Journal, 2013, 28, 354-359.	1.2	17
115	Supercritical CO ₂ extraction of volatile oils from Sardinian <i>Foeniculum vulgare</i> ssp. <i>vulgare</i> (Apiaceae): chemical composition and biological activity. Natural Product Research, 2014, 28, 1819-1825.	1.0	17
116	Unveiling the bioactive potential of the essential oil of a Portuguese endemism, Santolina impressa. Journal of Ethnopharmacology, 2019, 244, 112120.	2.0	17
117	Composition and Activity against Oral Pathogens of the Essential Oil of <i>Melampodium divaricatum</i> (<scp>Rich</scp> .) DC Chemistry and Biodiversity, 2014, 11, 438-444.	1.0	16
118	Antifungal activity of extracts fromCynomorium coccineumgrowing wild in Sardinia island (Italy). Natural Product Research, 2015, 29, 2247-2250.	1.0	16
119	Ridolfia segetum (L.) Moris (Apiaceae) from Portugal: A source of safe antioxidant and anti-inflammatory essential oil. Industrial Crops and Products, 2015, 65, 56-61.	2.5	16
120	Composition and leishmanicidal activity of the essential oil of <i>Vernonia polyanthes</i> Less (Asteraceae). Natural Product Research, 2017, 31, 2905-2908.	1.0	16
121	Effects of essential oils on the growth of Giardia lamblia trophozoites. Natural Product Communications, 2010, 5, 137-41.	0.2	16
122	The Essential Oil ofThymus villosus L. ssp.villosus and its Chemical Polymorphism. , 1997, 12, 117-122.		15
123	Chemical Composition and Biological Activity of the Volatile Extracts of <i>Achillea millefolium</i> . Natural Product Communications, 2011, 6, 1934578X1100601.	0.2	15
124	Antifungal activity and chemical composition of essential oils from <i>Smyrnium olusatrum</i> L. (Apiaceae) from Italy and Portugal. Natural Product Research, 2012, 26, 993-1003.	1.0	15
125	Chemical composition and biological activity of Tanacetum audibertii (Req.) DC. (Asteraceae), an endemic species of Sardinia Island, Italy. Industrial Crops and Products, 2015, 65, 472-476.	2.5	15
126	Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2. Natural Product Research, 2010, 24, 569-579.	1.0	14

#	Article	IF	CITATIONS
127	Assessment of Daucus carota L. (Apiaceae) subspecies by chemotaxonomic and DNA content analyses. Biochemical Systematics and Ecology, 2014, 55, 222-230.	0.6	14
128	Differential effects of the essential oils of <i>Lavandula luisieri</i> and <i>Eryngium duriaei</i> subsp. <i>juresianum</i> in cell models of two chronic inflammatory diseases. Pharmaceutical Biology, 2015, 53, 1220-1230.	1.3	14
129	Assessment of safe bioactive doses of <i>Foeniculum vulgare</i> Mill. essential oil from Portugal. Natural Product Research, 2017, 31, 2654-2659.	1.0	14
130	In vitro propagation of the wild carrot Daucus carota L. subsp. halophilus (Brot.) A. Pujadas for conservation purposes. In Vitro Cellular and Developmental Biology - Plant, 2010, 46, 47-56.	0.9	13
131	Otanthus maritimus (L.) Hoffmanns. & Link as a source of a bioactive and fragrant oil. Industrial Crops and Products, 2013, 43, 484-489.	2.5	13
132	Biopiracy versus One-World Medicine–From colonial relicts to global collaborative concepts. Phytomedicine, 2019, 53, 319-331.	2.3	13
133	Lavandula viridis LÂHér. Essential Oil Inhibits the Inflammatory Response in Macrophages Through Blockade of NF-KB Signaling Cascade. Frontiers in Pharmacology, 2021, 12, 695911.	1.6	13
134	Bioactivity and safety profile of Daucus carota subsp. maximus essential oil. Industrial Crops and Products, 2015, 77, 218-224.	2.5	12
135	Chemical characterization and bioactive potential of Thymus × citriodorus (Pers.) Schreb. preparations for anti-acne applications: Antimicrobial, anti-biofilm, anti-inflammatory and safety profiles. Journal of Ethnopharmacology, 2022, 287, 114935.	2.0	12
136	Composition and anti-fungal activity of the essential oil from Cameroonian <i>Vitex rivularis</i> Gürke. Natural Product Research, 2009, 23, 1478-1484.	1.0	11
137	Chemical characterisation and biological activity of leaf essential oils obtained from Pistacia terebinthus growing wild in Tunisia and Sardinia Island. Natural Product Research, 2017, 31, 2684-2689.	1.0	11
138	Chemical characterization and bioactive potential of Artemisia campestris L. subsp. maritima (DC) Arcang. essential oil and hydrodistillation residual water. Journal of Ethnopharmacology, 2021, 276, 114146.	2.0	11
139	Essential Oil Composition and Antimicrobial Activity of <i>Ageratum conyzoides</i> from S. Tomé and PrÃncipe. Journal of Essential Oil Research, 2005, 17, 239-242.	1.3	10
140	<i>Vitex ferruginea</i> Schumach. Et. Thonn. subsp. <i>amboniensis</i> (Gürke) Verdc.: glandular trichomes micromorphology, composition and antifungal activity of the essential oils. Journal of Essential Oil Research, 2008, 20, 86-90.	1.3	10
141	Margotia gummifera essential oil as a source of anti-inflammatory drugs. Industrial Crops and Products, 2013, 47, 86-91.	2.5	10
142	Chemical Composition of Laurencia obtusa Extract and Isolation of a New C15-Acetogenin. Molecules, 2017, 22, 779.	1.7	10
143	Antifungal activity and chemical composition of the essential oil from the aerial parts of two new <i>Teucrium capitatum</i> L. chemotypes from Sardinia Island, Italy. Natural Product Research, 2021, 35, 6007-6013.	1.0	10
144	Protective Effects of Phenylpropanoids and Phenylpropanoid-rich Essential Oils on the Cardiovascular System. Mini-Reviews in Medicinal Chemistry, 2019, 19, 1459-1471.	1.1	10

#	Article	IF	CITATIONS
145	Blueberry Counteracts Prediabetes in a Hypercaloric Diet-Induced Rat Model and Rescues Hepatic Mitochondrial Bioenergetics. Nutrients, 2021, 13, 4192.	1.7	10
146	Six Bacterial Vaginosis-Associated Species Can Form an In Vitro and Ex Vivo Polymicrobial Biofilm That Is Susceptible to Thymbra capitata Essential Oil. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	1.8	10
147	Chemical Composition of the Bark Oil ofCedrela odoratafrom S. Tomé and PrÃncipe. Journal of Essential Oil Research, 2003, 15, 422-424.	1.3	9
148	Lavandula Luisieri and Lavandula Viridis Essential Oils as Upcoming Anti-Protozoal Agents: A Key Focus on Leishmaniasis. Applied Sciences (Switzerland), 2019, 9, 3056.	1.3	9
149	Antifungal and anti-inflammatory potential of the endangered aromatic plant Thymus albicans. Scientific Reports, 2020, 10, 18859.	1.6	9
150	Antifungal and Anti-Inflammatory Potential of Bupleurum rigidum subsp. paniculatum (Brot.) H.Wolff Essential Oil. Antibiotics, 2021, 10, 592.	1.5	9
151	The Anti-Inflammatory Response of Lavandula luisieri and Lavandula pedunculata Essential Oils. Plants, 2022, 11, 370.	1.6	9
152	Isolation of the volatile oil from Satureja thymbra by supercritical carbon dioxide extraction: chemical composition and biological activity. Natural Product Communications, 2011, 6, 1523-6.	0.2	9
153	Effects of Essential Oils on the Growth of Giardia lamblia Trophozoites. Natural Product Communications, 2010, 5, 1934578X1000500.	0.2	8
154	NETWORKING ON CONSERVATION AND USE OF MEDICINAL, AROMATIC AND CULINARY PLANTS GENETIC RESOURCES IN PORTUGAL. Acta Horticulturae, 2011, , 21-35.	0.1	8
155	P-glycoprotein Mediated Efflux Modulators of Plant Origin: A Short Review. Natural Product Communications, 2016, 11, 1934578X1601100.	0.2	8
156	Intraspecific chemical variability of <i>Pistacia atlantica</i> Desf. subsp. <i>atlantica</i> essential oil from Northwest Algeria. Journal of Essential Oil Research, 2017, 29, 32-41.	1.3	8
157	Chemical and biomolecular analyses to discriminate three taxa of Pistacia genus from Sardinia Island (Italy) and their antifungal activity. Natural Product Research, 2018, 32, 2766-2774.	1.0	8
158	In vitro activities of glycoalkaloids from the Solanum lycocarpum against Leishmania infantum. Revista Brasileira De Farmacognosia, 2018, 28, 673-677.	0.6	8
159	Chemical characterization and bioactivity of the essential oil from <i>Santolina insularis</i> , a Sardinian endemism. Natural Product Research, 2022, 36, 445-449.	1.0	8
160	1,8-Cineole ameliorates right ventricle dysfunction associated with pulmonary arterial hypertension by restoring connexin43 and mitochondrial homeostasis. Pharmacological Research, 2022, 180, 106151.	3.1	8
161	Chemical composition and biological activity of essential oil of <i>Teucrium scordium</i> L. subsp. <i>scordioides</i> (Schreb.) Arcang. (Lamiaceae) from Sardinia Island (Italy). Natural Product Research, 2021, , 1-8.	1.0	8
162	ANTIMICROBIAL ACTIVITY OF THE ESSENTIAL OILS OF DITTRICHIA VISCOSA SUBSP. VISCOSA ON HELICOBACTER PYLORI. Acta Horticulturae, 2005, , 147-151.	0.1	7

#	Article	IF	CITATIONS
163	Trichomes Morphology and Essential Oils Characterization of Field-Growing and <i>In Vitro</i> Propagated Plants of <i>Lavandula pedunculata</i> . Microscopy and Microanalysis, 2008, 14, 148-149.	0.2	7
164	Chemical composition and antifungal activity of essential oil from <i>Juniperus phoenicea</i> subsp. <i>Phoenicea</i> berries from Jordan. Acta Alimentaria, 2013, 42, 504-511.	0.3	7
165	Chemical Composition and Trypanocidal Activity of the Essential Oils from Hedychium coronarium J. Koenig (Zingiberaceae). ISRN Infectious Diseases, 2013, 2013, 1-6.	0.5	7
166	Effects of the extract and glycoalkaloids of Solanum lycocarpum St. Hill on Giardia lamblia trophozoites. Pharmacognosy Magazine, 2015, 11, 161.	0.3	7
167	Comparing the effect of Thymus spp. essential oils on Candida auris. Industrial Crops and Products, 2022, 178, 114667.	2.5	7
168	Essential Oil Constituents ofPiper vicosanumYunker from the Brazilian Atlantic Forest. Journal of Essential Oil Research, 2006, 18, 392-395.	1.3	6
169	Characterization and distinction of two subspecies of Eryngium duriaei J. Gay ex Boiss., an Iberian endemic Apiaceae, using flow cytometry and essential oils composition. Plant Systematics and Evolution, 2013, 299, 611-618.	0.3	6
170	Essential Oils in Respiratory Mycosis: A Review. Molecules, 2022, 27, 4140.	1.7	6
171	Leaf trichomes of Portuguese Lavandula species: a comparative morphological study. Microscopy and Microanalysis, 2009, 15, 37-38.	0.2	5
172	Isolation of the Volatile Oil from Satureja thymbra by Supercritical Carbon Dioxide Extraction: Chemical Composition and Biological Activity. Natural Product Communications, 2011, 6, 1934578X1100601.	0.2	5
173	Salvia ceratophylla L. from South of Jordan: new insights on chemical composition and biological activities. Natural Products and Bioprospecting, 2020, 10, 307-316.	2.0	5
174	The essential oil from the fruits of Peucedanum oreoselinum (L.) Moench (Apiaceae) as a natural source of P-glycoprotein inhibitors. Journal of Herbal Medicine, 2021, 29, 100482.	1.0	5
175	Chemical Composition of the Oil ofAfrocarpus mannii, an Endemic Species from S.Tomé e PrÃncipe. Journal of Essential Oil Research, 2001, 13, 431-433.	1.3	4
176	A Rapid and Efficient Protocol for Clonal Propagation of Phenolic-Rich Lavandula multifida. Journal of Agricultural Science, 2015, 7, .	0.1	4
177	Blueberry Consumption Challenges Hepatic Mitochondrial Bioenergetics and Elicits Transcriptomics Reprogramming in Healthy Wistar Rats. Pharmaceutics, 2020, 12, 1094.	2.0	4
178	Thymbra capitata essential oil has a significant antimicrobial activity against methicillinâ€resistant Staphylococcus aureus preâ€formed biofilms. Letters in Applied Microbiology, 2022, , .	1.0	3
179	Chemical Composition and Antimicrobial Activity of the Commercially Available Oil of <i>Luma chequen</i> (Molina) A. Gray. Journal of Essential Oil Research, 2006, 18, 108-110.	1.3	2

Are Natural Products an Alternative Therapy for Dermatophytosis?. , 2021, , 473-519.

2

#	Article	IF	CITATIONS
181	Juniperus phoenicea from Jordan. Medicinal and Aromatic Plants of the World, 2014, , 241-252.	0.1	2
182	Assessment of the properties of the essential oil from Ridolfia segetum Moris (Portugal) on cancer cell viability. Planta Medica, 2014, 80, .	0.7	2
183	Potential antioxidant and anti-inflammatory properties in Teucrium salviastrum Schreb Planta Medica, 2010, 76, .	0.7	2
184	Anti-inflammatory potential of Lavandula viridis esential oil. Planta Medica, 2012, 78, .	0.7	2
185	THYMUS: AN ESSENTIAL OIL WITH ANTIFUNGAL ACTIVITY. Mycoses, 2002, 45, 47-47.	1.8	1
186	BUPLEURUM SPP. IN CENTRAL PORTUGAL: IN VITRO PROPAGATION AND SECRETORY DUCTS. Acta Horticulturae, 2015, , 527-534.	0.1	1
187	Anti-inflammatory potential of the essential oil of the Iberian endemism Thymus carnosus. Planta Medica, 2014, 80, .	0.7	1
188	R2168 Anti-giardial activity of phenolic essential oils. International Journal of Antimicrobial Agents, 2007, 29, S627-S628.	1.1	0
189	546 DUAL INHIBITION OFII-1-INDUCED NF-ήB ACTIVATION AND iNOS ENZYME ACTIVITY IN HUMAN CHONDROCYTES BY NATURAL AND COMMERCIAL α-PINENE. Osteoarthritis and Cartilage, 2008, 16, S231-S232.	0.6	0
190	501 SCREENING OF ESSENTIAL OILS AS POTENTIAL SOURCES OF NATURAL INHIBITORS OF INOS EXPRESSION AND NO PRODUCTION IN HUMAN CHONDROCYTES. Osteoarthritis and Cartilage, 2011, 19, S231-S232.	0.6	0
191	The essential oil of Eryngium duriaei subsp. juresianum inhibits IL-1β induced NF-kB and MAPK activation in human chondrocytes. Osteoarthritis and Cartilage, 2012, 20, S290.	0.6	0
192	Blueberry effects on prediabetic nephropathy—a preclinical in vivo approach. European Journal of Public Health, 2021, 31, .	0.1	0
193	Antifungal and anti-inflammatory claims for wild carrot essential oil. Planta Medica, 2014, 80, .	0.7	0