Ravin Narain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7635171/publications.pdf

Version: 2024-02-01

158 papers	6,749 citations	41258 49 h-index	73 g-index
199	199	199	7175
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Zwitterionic Block Copolymer Prodrug Micelles for pH Responsive Drug Delivery and Hypoxia-Specific Chemotherapy. Molecular Pharmaceutics, 2022, 19, 1766-1777.	2.3	11
2	Investigation of alkali and salt resistant copolymer of acrylic acid and ⟨i⟩N⟨ i⟩â€vinylâ€2â€pyrrolidinone for medium viscosity oil recovery. Canadian Journal of Chemical Engineering, 2022, 100, 1427-1438.	0.9	3
3	Construction of antibacterial adhesion surfaces based on bioinspired borneol-containing glycopolymers. Biomaterials Science, 2022, 10, 1787-1794.	2.6	6
4	Dopamine Assisted Self-Cleaning, Antifouling, and Antibacterial Coating <i>via</i> Dynamic Covalent Interactions. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9557-9569.	4.0	37
5	Cellular mechanism of action of 2-nitroimidazoles as hypoxia-selective therapeutic agents. Redox Biology, 2022, 52, 102300.	3.9	9
6	Glycopolymer–Cell-Penetrating Peptide (CPP) Conjugates for Efficient Epidermal Growth Factor Receptor (EGFR) Silencing. ACS Macro Letters, 2022, 11, 580-587.	2.3	7
7	Temperature-Responsive Aldehyde Hydrogels with Injectable, Self-Healing, and Tunable Mechanical Properties. Biomacromolecules, 2022, 23, 2552-2561.	2.6	7
8	Synergistic size and charge conversions of functionalized PAMAM dendrimers under the acidic tumor microenvironment. Biomaterials Science, 2022, 10, 4271-4283.	2.6	4
9	Dual-Cross-Linked Network Hydrogels with Multiresponsive, Self-Healing, and Shear Strengthening Properties. Biomacromolecules, 2021, 22, 800-810.	2.6	29
10	Flocculating and dewatering of kaolin suspensions with different forms of poly(acrylamideâ€coâ€diallyl) Tj ETQq(0.9 rgBT	/Overlock 10
11	Glyco-Nanomedicines and Their Applications in Cancer Treatment. , 2021, , 566-585.		1
12	Multi-responsive, injectable, and self-healing hydrogels based on benzoxaborole–tannic acid complexation. Polymer Chemistry, 2021, 12, 5623-5630.	1.9	8
13	Three-Dimensional Printed and Biocompatible Conductive Composites Comprised of Polyhydroxybutyrate and Multiwalled Carbon Nanotubes. Industrial & Engineering Chemistry Research, 2021, 60, 885-897.	1.8	12
14	Antifouling and Antibacterial Polymer-Coated Surfaces Based on the Combined Effect of Zwitterions and the Natural Borneol. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9006-9014.	4.0	65
15	Dual Cross-Linked Hydrogels with Injectable, Self-Healing, and Antibacterial Properties Based on the Chemical and Physical Cross-Linking. Biomacromolecules, 2021, 22, 1685-1694.	2.6	35
16	Injectable Self-Healing Hydrogel via Biological Environment-Adaptive Supramolecular Assembly for Gastric Perforation Healing. ACS Nano, 2021, 15, 9913-9923.	7.3	57
17	A novel approach for drag reduction using polymer coating. Ocean Engineering, 2021, 240, 109895.	1.9	6
18	Carbohydrate Biosensors and Applications. , 2021, , 149-167.		0

#	Article	IF	CITATIONS
19	Bioinspired dopamine and zwitterionic polymers for non-fouling surface engineering. Chemical Society Reviews, 2021, 50, 11668-11683.	18.7	120
20	Water soluble polymeric nanofibres for rapid flocculation and enhanced dewatering of mature fine tailings. Canadian Journal of Chemical Engineering, 2020, 98, 96-103.	0.9	6
21	Trehalose-Based Polyethers for Cryopreservation and Three-Dimensional Cell Scaffolds. Biomacromolecules, 2020, 21, 1264-1273.	2.6	25
22	PEG-PLGA nanospheres loaded with nanoscintillators and photosensitizers for radiation-activated photodynamic therapy. Acta Biomaterialia, 2020, 117, 335-348.	4.1	24
23	Oncogenic Epidermal Growth Factor Receptor Silencing in Cervical Carcinoma Mediated by Dynamic Sugar-Benzoxaborole Polyplexes. ACS Macro Letters, 2020, 9, 1464-1470.	2.3	7
24	Dynamic Flexible Hydrogel Network with Biological Tissue-like Self-Protective Functions. Chemistry of Materials, 2020, 32, 10545-10555.	3.2	30
25	Facile Preparation of Macromolecular Prodrugs for Hypoxia-Specific Chemotherapy. ACS Macro Letters, 2020, 9, 1687-1692.	2.3	9
26	Hydrogels. , 2020, , 203-244.		25
27	Preparation and Characterization of Thermoresponsive PEG-Based Injectable Hydrogels and Their Application for 3D Cell Culture. Biomacromolecules, 2020, 21, 1254-1263.	2.6	18
28	Multiresponsive and Self-Healing Hydrogel via Formation of Polymer–Nanogel Interfacial Dynamic Benzoxaborole Esters at Physiological pH. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44742-44750.	4.0	35
29	In Situ Forming, Dual-Crosslink Network, Self-Healing Hydrogel Enabled by a Bioorthogonal Nopoldiol–Benzoxaborolate Click Reaction with a Wide pH Range. Chemistry of Materials, 2019, 31, 4092-4102.	3.2	64
30	Removal of Cryptosporidium surrogates in drinking water direct filtration. Colloids and Surfaces B: Biointerfaces, 2019, 181, 499-505.	2.5	4
31	Injectable, Self-Healing Hydrogel with Tunable Optical, Mechanical, and Antimicrobial Properties. Chemistry of Materials, 2019, 31, 2366-2376.	3.2	86
32	Hydroxyl-Rich PGMA-Based Cationic Glycopolymers for Intracellular siRNA Delivery: Biocompatibility and Effect of Sugar Decoration Degree. Biomacromolecules, 2019, 20, 2068-2074.	2.6	24
33	Rapid Mussel-Inspired Surface Zwitteration for Enhanced Antifouling and Antibacterial Properties. Langmuir, 2019, 35, 1621-1630.	1.6	62
34	Injectable, Self-Healing, and Multi-Responsive Hydrogels via Dynamic Covalent Bond Formation between Benzoxaborole and Hydroxyl Groups. Biomacromolecules, 2019, 20, 1028-1035.	2.6	63
35	Functionalized polystyrene microspheres as Cryptosporidium surrogates. Colloids and Surfaces B: Biointerfaces, 2019, 175, 680-687.	2.5	8
36	Tumor Microenvironment-Regulated Redox Responsive Cationic Galactose-Based Hyperbranched Polymers for siRNA Delivery. Bioconjugate Chemistry, 2019, 30, 405-412.	1.8	22

#	Article	IF	CITATIONS
37	Physical structure variations of bacterial cellulose produced by different Komagataeibacter xylinus strains and carbon sources in static and agitated conditions. Cellulose, 2018, 25, 1571-1581.	2.4	122
38	Injectable Self-Healing Zwitterionic Hydrogels Based on Dynamic Benzoxaborole–Sugar Interactions with Tunable Mechanical Properties. Biomacromolecules, 2018, 19, 596-605.	2.6	81
39	Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes. Journal of Membrane Science, 2018, 549, 350-356.	4.1	135
40	Bacterial Cellulose Nanocrystals (BCNC) Preparation and Characterization from Three Bacterial Cellulose Sources and Development of Functionalized BCNCs as Nucleic Acid Delivery Systems. ACS Applied Nano Materials, 2018, 1, 209-221.	2.4	73
41	Well-Defined Cationic <i>N</i> -[3-(Dimethylamino)propyl]methacrylamide Hydrochloride-Based (Co)polymers for siRNA Delivery. Biomacromolecules, 2018, 19, 209-221.	2.6	30
42	Recent development and biomedical applications of self-healing hydrogels. Expert Opinion on Drug Delivery, 2018, 15, 77-91.	2.4	108
43	Rational Design of Self-Healing Tough Hydrogels: A Mini Review. Frontiers in Chemistry, 2018, 6, 497.	1.8	99
44	Achieving Safe and Highly Efficient Epidermal Growth Factor Receptor Silencing in Cervical Carcinoma by Cationic Degradable Hyperbranched Polymers. ACS Applied Bio Materials, 2018, 1, 961-966.	2.3	8
45	Acid Degradable Cationic Galactose-Based Hyperbranched Polymers as Nanotherapeutic Vehicles for Epidermal Growth Factor Receptor (EGFR) Knockdown in Cervical Carcinoma. Biomacromolecules, 2018, 19, 4052-4058.	2.6	21
46	Controlling pre-osteoblastic cell adhesion and spreading on glycopolymer brushes of variable film thickness. Journal of Materials Science: Materials in Medicine, 2018, 29, 98.	1.7	10
47	Synthesis of Highly Biocompatible and Temperature-Responsive Physical Gels for Cryopreservation and 3D Cell Culture. ACS Applied Bio Materials, 2018, 1, 356-366.	2.3	33
48	Bioinspired Self-Healing Hydrogel Based on Benzoxaborole-Catechol Dynamic Covalent Chemistry for 3D Cell Encapsulation. ACS Macro Letters, 2018, 7, 904-908.	2.3	149
49	Rapid and Highly Sensitive Detection of Dopamine Using Conjugated Oxaborole-Based Polymer and Glycopolymer Systems. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15225-15231.	4.0	41
50	Flocculation and Dewatering of Mature Fine Tailings Using Temperature-Responsive Cationic Polymers. Langmuir, 2017, 33, 5900-5909.	1.6	41
51	Filtration of Glycoprotein-Modified Carboxylated Polystyrene Microspheres as Cryptosporidium Oocysts Surrogates: Effects of Flow Rate, Alum, and Humic Acid. Journal of Environmental Engineering, ASCE, 2017, 143, 04017032.	0.7	4
52	A nanoparticle-preparation kit using ethylene glycol-based block copolymers with a common temperature-responsive block. Polymer Chemistry, 2017, 8, 7311-7315.	1.9	2
53	Effective and Specific Gene Silencing of Epidermal Growth Factor Receptors Mediated by Conjugated Oxaborole and Galactose-Based Polymers. ACS Macro Letters, 2017, 6, 768-774.	2.3	31
54	Study of the RAFT homopolymerization and copolymerization of N-[3-(dimethylamino)propyl]methacrylamide hydrochloride and evaluation of the cytotoxicity of the resulting homo- and copolymers. Polymer Chemistry, 2017, 8, 4140-4151.	1.9	15

#	Article	IF	CITATIONS
55	A pH-Indicating Colorimetric Tough Hydrogel Patch towards Applications in a Substrate for Smart Wound Dressings. Polymers, 2017, 9, 558.	2.0	59
56	Thermo-Responsive Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing. Polymers, 2017, 9, 119.	2.0	121
57	Drag Reduction Using Polysaccharides in a Taylor–Couette Flow. Polymers, 2017, 9, 683.	2.0	4
58	Nature-Inspired Polymers. , 2016, , 59-74.		0
59	Recent Advances in Dual Temperature Responsive Block Copolymers and Their Potential as Biomedical Applications. Polymers, 2016, 8, 380.	2.0	102
60	Cationic Galactose-Conjugated Copolymers for Epidermal Growth Factor (EGFR) Knockdown in Cervical Adenocarcinoma. ACS Biomaterials Science and Engineering, 2016, 2, 853-859.	2.6	17
61	Self-Healing and Injectable Shear Thinning Hydrogels Based on Dynamic Oxaborole-Diol Covalent Cross-Linking. ACS Biomaterials Science and Engineering, 2016, 2, 2315-2323.	2.6	42
62	Thermoâ€responsive polymers for drag reduction in turbulent Taylor–Couette flow. Journal of Applied Polymer Science, 2016, 133, .	1.3	13
63	Molecular Weight Dependence of Synthetic Glycopolymers on Flocculation and Dewatering of Fine Particles. Langmuir, 2016, 32, 11615-11622.	1.6	18
64	Synthetic Approach to Glycopolymer Base Nanoparticle Gold(I) Conjugate: A New Generation of Therapeutic Agents. Methods in Molecular Biology, 2016, 1367, 157-168.	0.4	1
65	Synthetic Approach to Biotinylated Glyco-Functionalized Quantum Dots: A New Fluorescent Probes for Biomedical Applications. Methods in Molecular Biology, 2016, 1367, 109-121.	0.4	0
66	Temperature-responsive mixed core nanoparticle properties determined by the composition of statistical and block copolymers in the core. Polymer Chemistry, 2015, 6, 1693-1697.	1.9	16
67	Galactose-based Thermosensitive Nanogels for Targeted Drug Delivery of Iodoazomycin Arabinofuranoside (IAZA) for Theranostic Management of Hypoxic Hepatocellular Carcinoma. Biomacromolecules, 2015, 16, 1978-1986.	2.6	57
68	Temperature- and pH-Responsive Benzoboroxole-Based Polymers for Flocculation and Enhanced Dewatering of Fine Particle Suspensions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27176-27187.	4.0	30
69	Study of Bacterial Adhesion on Biomimetic Temperature Responsive Glycopolymer Surfaces. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1652-1661.	4.0	41
70	Carbohydrate-based materials for targeted delivery of drugs and genes to the liver. Nanomedicine, 2015, 10, 2263-2288.	1.7	41
71	Asialoglycoprotein Receptor-Mediated Gene Delivery to Hepatocytes Using Galactosylated Polymers. Biomacromolecules, 2015, 16, 3008-3020.	2.6	63
72	Blood Components Interactions to Ionic and Nonionic Glyconanogels. Biomacromolecules, 2015, 16, 2990-2997.	2.6	20

#	Article	IF	Citations
73	pH and glucose responsive nanofibers for the reversible capture and release of lectins. Biomaterials Science, 2015, 3, 152-162.	2.6	27
74	Spatiotemporal Control of Synergistic Gel Disintegration Consisting of Boroxole- and Glyco-Based Polymers via Photoinduced Proton Transfer. Journal of Physical Chemistry B, 2015, 119, 2323-2329.	1.2	28
75	Shape-Memory Materials. NIMS Monographs, 2014, , 285-373.	0.1	1
76	Smart Biomaterials. NIMS Monographs, 2014, , .	0.1	57
77	Smart Hydrogels. NIMS Monographs, 2014, , 9-65.	0.1	50
78	Calcium mediated formation of phosphorylcholine-based polyplexes for efficient knockdown of epidermal growth factor receptors (EGFR) in HeLa cells. Chemical Communications, 2014, 50, 2943-2946.	2.2	9
79	Dual-temperature and pH responsive (ethylene glycol)-based nanogels <i>via</i> structural design. Polymer Chemistry, 2014, 5, 3061-3070.	1.9	28
80	Synthesis and Evaluation of Glycopolymeric Decorated Gold Nanoparticles Functionalized with Gold-Triphenyl Phosphine as Anti-Cancer Agents. Biomacromolecules, 2014, 15, 3802-3810.	2.6	48
81	Study of Bacterial Adhesion on Different Glycopolymer Surfaces by Quartz Crystal Microbalance with Dissipation. Langmuir, 2014, 30, 7377-7387.	1.6	49
82	Temperature-Responsive Hyperbranched Amine-Based Polymers for Solid–Liquid Separation. Langmuir, 2014, 30, 2360-2368.	1.6	40
83	Therapeutic potential of carbohydrate-based polymeric and nanoparticle systems. Expert Opinion on Drug Delivery, 2014, 11, 867-884.	2.4	43
84	Introductory Guide to Smart Biomaterials. NIMS Monographs, 2014, , 1-7.	0.1	2
85	Smart Nanoassemblies and Nanoparticles. NIMS Monographs, 2014, , 67-113.	0.1	1
86	Smart Bioconjugates. NIMS Monographs, 2014, , 237-284.	0.1	1
87	Smart Surfaces. NIMS Monographs, 2014, , 115-188.	0.1	0
88	Smart Nanofibers. NIMS Monographs, 2014, , 189-235.	0.1	0
89	Fabrication of FITCâ€doped silica nanoparticles and study of their cellular uptake in the presence of lectins. Journal of Biomedical Materials Research - Part A, 2013, 101A, 2090-2096.	2.1	22
90	Construction of †smart†surfaces with polymer functionalized silica nanoparticles. Polymer Chemistry, 2013, 4, 1038-1047.	1.9	25

#	Article	IF	Citations
91	Synthesis and Evaluation of Polymeric Gold Glyco-Conjugates as Anti-Cancer Agents. Bioconjugate Chemistry, 2013, 24, 979-986.	1.8	38
92	Poly(N-vinyl-2-pyrrolidone-co-vinyl alcohol), a Versatile Amphiphilic Polymeric Scaffold for Multivalent Probes. Organic Letters, 2013, 15, 5190-5193.	2.4	12
93	Cell line dependent uptake and transfection efficiencies of PEl–anionic glycopolymer systems. Biomaterials, 2013, 34, 4368-4376.	5.7	36
94	Glycopolymers and Glycoâ€nanoparticles in Biomolecular Recognition Processes and Vaccine Development. Macromolecular Bioscience, 2013, 13, 9-27.	2.1	75
95	Progress of RAFT based polymers in gene delivery. Progress in Polymer Science, 2013, 38, 767-790.	11.8	137
96	Cationic glyco-nanogels for epidermal growth factor receptor (EGFR) specific siRNA delivery in ovarian cancer cells. Polymer Chemistry, 2013, 4, 3829.	1.9	42
97	Linear and hyperbranched phosphorylcholine based homopolymers for blood biocompatibility. Polymer Chemistry, 2013, 4, 3140.	1.9	25
98	Temperature, pH, and Glucose Responsive Gels via Simple Mixing of Boroxole- and Glyco-Based Polymers. ACS Macro Letters, 2013, 2, 260-264.	2.3	113
99	Simple Coating with pH-Responsive Polymer-Functionalized Silica Nanoparticles of Mixed Sizes for Controlled Surface Properties. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10004-10010.	4.0	16
100	Recent advances in the preparation of glycopolymer bioconjugates. European Polymer Journal, 2013, 49, 3010-3033.	2.6	51
101	Intracellular Delivery of DNA and Enzyme in Active Form Using Degradable Carbohydrate-Based Nanogels. Molecular Pharmaceutics, 2012, 9, 3160-3170.	2.3	50
102	Glyconanoparticles for Gene Delivery. ACS Symposium Series, 2012, , 81-105.	0.5	2
103	Degradable Thermoresponsive Nanogels for Protein Encapsulation and Controlled Release. Bioconjugate Chemistry, 2012, 23, 75-83.	1.8	91
104	Hyperbranched Glycopolymers for Blood Biocompatibility. Bioconjugate Chemistry, 2012, 23, 1050-1058.	1.8	67
105	Impact of the nature, size and chain topologies of carbohydrate–phosphorylcholine polymeric gene delivery systems. Biomaterials, 2012, 33, 7858-7870.	5.7	58
106	Biodegradable and Nontoxic Nanogels as Nonviral Gene Delivery Systems. Bioconjugate Chemistry, 2012, 23, 1925-1933.	1.8	49
107	A  smart' approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment. Polymer Chemistry, 2012, 3, 1150.	1.9	27
108	Novel temperature-responsive polymer brushes with carbohydrate residues facilitate selective adhesion and collection of hepatocytes. Science and Technology of Advanced Materials, 2012, 13, 064206.	2.8	35

#	Article	IF	Citations
109	Synthesis of cationic magnetic nanoparticles and evaluation of their gene delivery efficacy in Hep G2 cells. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2342-2347.	2.1	7
110	Fabrication of doubly responsive polymer functionalized silica nanoparticles via a simple thiol–ene click chemistry. Polymer Chemistry, 2012, 3, 2545.	1.9	49
111	The effect of molecular weight, compositions and lectin type on the properties of hyperbranched glycopolymers as non-viral gene delivery systems. Biomaterials, 2012, 33, 3990-4001.	5.7	97
112	Rho kinases (ROCKs) in sepsis-induced acute lung injury. Journal of Thoracic Disease, 2012, 4, 12-4.	0.6	1
113	Well-Controlled Cationic Water-Soluble Phospholipid Polymerâ^'DNA Nanocomplexes for Gene Delivery. Bioconjugate Chemistry, 2011, 22, 1228-1238.	1.8	47
114	Detailed study of the reversible addition–fragmentation chain transfer polymerization and co-polymerization of 2-methacryloyloxyethyl phosphorylcholine. Polymer Chemistry, 2011, 2, 632-639.	1.9	48
115	Photochemical Approach toward Deposition of Gold Nanoparticles on Functionalized Carbon Nanotubes. Langmuir, 2011, 27, 12642-12649.	1.6	19
116	Septic sera induces apoptosis and DNA fragmentation factor 40 activation in fibroblasts. Biochemical and Biophysical Research Communications, 2011, 412, 260-265.	1.0	11
117	Construction of Polymer–Protein Bioconjugates with Varying Chain Topologies: Polymer Molecular Weight and Steric Hindrance Effects. Chemistry - an Asian Journal, 2011, 6, 2835-2845.	1.7	11
118	The effect of polymer architecture, composition, and molecular weight on the properties of glycopolymer-based non-viral gene delivery systems. Biomaterials, 2011, 32, 5279-5290.	5.7	125
119	Impact of the Nature and Size of the Polymeric Backbone on the Ability of Heterobifunctional Ligands to Mediate Shiga Toxin and Serum Amyloid P Component Ternary Complex Formation. Toxins, 2011 , 3, $1065-1088$.	1.5	12
120	Rapid Synthesis of Gold Nanorods Using a One-Step Photochemical Strategy. Langmuir, 2010, 26, 18392-18399.	1.6	26
121	Synthesis of Biotinylated \hat{l} ±-d-Mannoside or N-Acetyl \hat{l} 2-d-Glucosaminoside Decorated Gold Nanoparticles: Study of Their Biomolecular Recognition with Con A and WGA Lectins. Bioconjugate Chemistry, 2010, 21, 521-530.	1.8	57
122	Copper-Catalyzed Bimolecular Coupling of \hat{l}_{\pm} , \hat{l}_{∞} -Dibromide-Functionalized Poly(\hat{l}_{∞} -caprolactone). Macromolecules, 2010, 43, 3228-3232.	2.2	16
123	Novel wellâ€defined glycopolymers synthesized via the reversible addition fragmentation chain transfer process in aqueous media. Journal of Polymer Science Part A, 2009, 47, 614-627.	2.5	82
124	Protein encapsulation and release from degradable sugar based hydrogels. European Polymer Journal, 2009, 45, 1689-1697.	2.6	21
125	Synthesis and characterization of biocompatible magnetic glyconanoparticles. Journal of Magnetism and Magnetic Materials, 2009, 321, 1393-1396.	1.0	30
126	Probing temperature-sensitive behavior of pNIPAAm-coated iron oxide nanoparticles using frequency-dependent magnetic measurements. Journal of Magnetism and Magnetic Materials, 2009, 321, 1377-1380.	1.0	35

#	Article	IF	CITATIONS
127	Fabrication of Two Types of Shell-Cross-Linked Micelles with "Inverted―Structures in Aqueous Solution from Schizophrenic Water-Soluble ABC Triblock Copolymer via Click Chemistry. Langmuir, 2009, 25, 2046-2054.	1.6	78
128	Fabrication of SWNT/Silica Composites by the Solâ^'Gel Process. ACS Applied Materials & Samp; Interfaces, 2009, 1, 181-186.	4.0	30
129	Study of Transfection Efficiencies of Cationic Glyconanoparticles of Different Sizes in Human Cell Line. ACS Applied Materials & Different Sizes in Human Cell Line. ACS Applied Materials	4.0	46
130	Well-Defined Galactose-Containing Multi-Functional Copolymers and Glyconanoparticles for Biomolecular Recognition Processes. Macromolecules, 2009, 42, 6393-6405.	2.2	84
131	Cationic Glyco-Functionalized Single-Walled Carbon Nanotubes as Efficient Gene Delivery Vehicles. Bioconjugate Chemistry, 2009, 20, 2017-2022.	1.8	90
132	Synthesis and characterization of novel glycosurfaces by ATRP. Soft Matter, 2009, 5, 1621.	1.2	47
133	Covalently stabilized temperature and pH responsive four-layer nanoparticles fabricated from surface  clickable' shell cross-linked micelles. Soft Matter, 2009, 5, 1530.	1.2	40
134	Biotinylated Glyco-Functionalized Quantum Dots: Synthesis, Characterization, and Cytotoxicity Studies. Bioconjugate Chemistry, 2009, 20, 994-1001.	1.8	99
135	Cationic Glyconanoparticles: Their Complexation with DNA, Cellular Uptake, and Transfection Efficiencies. Bioconjugate Chemistry, 2009, 20, 2169-2176.	1.8	63
136	Degradable Thermoresponsive Core Cross-Linked Micelles: Fabrication, Surface Functionalization, and Biorecognition. Langmuir, 2009, 25, 13344-13350.	1.6	65
137	Water-Assisted Atom Transfer Radical Polymerization of $\langle i \rangle N \langle i \rangle$ -Isopropylacrylamide: Nature of Solvent and Temperature. Journal of Physical Chemistry B, 2009, 113, 676-681.	1.2	79
138	Characterization of human septic sera induced gene expression modulation in human myocytes. International Journal of Clinical and Experimental Medicine, 2009, 2, 131-48.	1.3	7
139	Facile synthesis of controlledâ€structure primary amineâ€based methacrylamide polymers via the reversible additionâ€fragmentation chain transfer process. Journal of Polymer Science Part A, 2008, 46, 4984-4996.	2.5	85
140	pHâ€Switchable Complexation between Double Hydrophilic Heteroarm Star Copolymers and a Cationic Block Polyelectrolyte. Macromolecular Chemistry and Physics, 2008, 209, 754-763.	1.1	15
141	Synthesis and characterization of novel (amide–imide)-silica composites by the sol–gel process. Composites Science and Technology, 2008, 68, 617-624.	3.8	40
142	Monodisperse Protein Stabilized Gold Nanoparticles via a Simple Photochemical Process. Journal of Physical Chemistry C, 2008, 112, 12282-12290.	1.5	69
143	Reversible Additionâ^'Fragmentation Chain Transfer Polymerization of N-Isopropylacrylamide:  A Comparison between a Conventional and a Fast Initiator. Journal of Physical Chemistry B, 2007, 111, 11120-11126.	1.2	21
144	Preparation of Biotinylated Glyconanoparticles via a Photochemical Process and Study of Their Bioconjugation to Streptavidin. Langmuir, 2007, 23, 12835-12841.	1.6	59

#	Article	IF	CITATIONS
145	Facile Preparation of Glyconanoparticles and Their Bioconjugation to Streptavidin. Langmuir, 2007, 23, 5056-5061.	1.6	85
146	Aqueous solution behavior of p(N-isopropyl acrylamide) in the presence of water-soluble macromolecular species. European Polymer Journal, 2007, 43, 4344-4354.	2.6	28
147	Syntheses and micellar properties of well-defined amphiphilic AB2 and A2B Y-shaped miktoarm star copolymers of É-caprolactone and 2-(dimethylamino)ethyl methacrylate. Journal of Polymer Science Part A, 2007, 45, 1446-1462.	2.5	55
148	Synthesis of Monodisperse Biotinylated p(NIPAAm)-Coated Iron Oxide Magnetic Nanoparticles and their Bioconjugation to Streptavidin. Langmuir, 2007, 23, 6299-6304.	1.6	133
149	Modification of carboxyl-functionalized single-walled carbon nanotubes with biocompatible, water-soluble phosphorylcholine and sugar-based polymers: Bioinspired nanorods. Journal of Polymer Science Part A, 2006, 44, 6558-6568.	2.5	50
150	Tailor-made protein–glycopolymer bioconjugates. Reactive and Functional Polymers, 2006, 66, 1589-1595.	2.0	36
151	Biomimetic Stimulus-Responsive Star Diblock Gelators. Langmuir, 2005, 21, 9946-9954.	1.6	76
152	Biomimetic thermo-responsive star diblock gelators. Chemical Communications, 2004, , 2746.	2.2	18
153	Direct Synthesis and Aqueous Solution Properties of Well-Defined Cyclic Sugar Methacrylate Polymers. Macromolecules, 2003, 36, 4675-4678.	2.2	109
154	Synthesis and Aqueous Solution Properties of Novel Sugar Methacrylate-Based Homopolymers and Block Copolymers. Biomacromolecules, 2003, 4, 1746-1758.	2.6	237
155	Synthesis of low polydispersity, controlled-structure sugar methacrylate polymers under mild conditions without protecting group chemistryElectronic supplementary information (ESI) available: experimental protocols, spectroscopic characterization and rates of polymerization. See http://www.rsc.org/suppdata/cc/b2/b208654a/. Chemical Communications, 2002, , 2776-2777.	2.2	100
156	Synthesis and characterization of novel polymers derived from gluconolactone. Polymer International, 2002, 51, 85-91.	1.6	11
157	Synthesis and characterization of polymers containing linear sugar moieties as side groups. European Polymer Journal, 2002, 38, 273-280.	2.6	36
158	Schiff base complexes of ruthenium(II) and their use as catalytic oxidants. Polyhedron, 1998, 18, 341-345.	1.0	64