Daniele Daffonchio

List of Publications by Citations

Source: https://exaly.com/author-pdf/7635145/daniele-daffonchio-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 247
papers
 11,213
citations
 56
h-index
 94
g-index

 264
ext. papers
 13,484
ext. citations
 6
avg, IF
 5.95
L-index

#	Paper	IF	Citations
247	Initial community evenness favours functionality under selective stress. <i>Nature</i> , 2009 , 458, 623-6	50.4	683
246	Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. <i>Applied and Environmental Microbiology</i> , 2004 , 70, 6147-56	4.8	405
245	How to get more out of molecular fingerprints: practical tools for microbial ecology. <i>Environmental Microbiology</i> , 2008 , 10, 1571-81	5.2	388
244	Release and persistence of extracellular DNA in the environment. <i>Environmental Biosafety Research</i> , 2007 , 6, 37-53		327
243	Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. <i>Environmental Microbiology</i> , 2015 , 17, 316-31	5.2	316
242	Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 9047	- 5 1·5	299
241	A drought resistance-promoting microbiome is selected by root system under desert farming. <i>PLoS ONE</i> , 2012 , 7, e48479	3.7	291
240	The enigma of prokaryotic life in deep hypersaline anoxic basins. <i>Science</i> , 2005 , 307, 121-3	33.3	243
239	Acetic acid bacteria, newly emerging symbionts of insects. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 6963-70	4.8	212
238	Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline. <i>Nature</i> , 2006 , 440, 203-7	50.4	185
237	Homoduplex and heteroduplex polymorphisms of the amplified ribosomal 16S-23S internal transcribed spacers describe genetic relationships in the "Bacillus cereus group". <i>Applied and Environmental Microbiology</i> , 2000 , 66, 5460-8	4.8	137
236	Biotechnological applications of extremophiles, extremozymes and extremolytes. <i>Applied Microbiology and Biotechnology</i> , 2015 , 99, 7907-13	5.7	134
235	Two-stage vs single-stage thermophilic anaerobic digestion: comparison of energy production and biodegradation efficiencies. <i>Environmental Science & Environmental Science & </i>	10.3	125
234	Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders. <i>Environmental Microbiology</i> , 2009 , 11, 3252-64	5.2	121
233	Delayed larval development in Anopheles mosquitoes deprived of Asaia bacterial symbionts. <i>BMC Microbiology</i> , 2012 , 12 Suppl 1, S2	4.5	117
232	Grapevine rootstocks shape underground bacterial microbiome and networking but not potential functionality. <i>Microbiome</i> , 2018 , 6, 3	16.6	108
231	Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. <i>Environmental Microbiology</i> , 2001 , 3, 471-9	5.2	106

230	Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. <i>BioMed Research International</i> , 2013 , 2013, 248078	3	104
229	Gut microbiome dysbiosis and honeybee health. <i>Journal of Applied Entomology</i> , 2011 , 135, 524-533	1.7	104
228	Sulfur cycling and methanogenesis primarily drive microbial colonization of the highly sulfidic Urania deep hypersaline basin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 9151-6	11.5	104
227	Mosquito-bacteria symbiosis: the case of Anopheles gambiae and Asaia. <i>Microbial Ecology</i> , 2010 , 60, 644	l <u>-</u> 54	103
226	Paternal transmission of symbiotic bacteria in malaria vectors. <i>Current Biology</i> , 2008 , 18, R1087-8	6.3	100
225	Biotechnologies for Marine Oil Spill Cleanup: Indissoluble Ties with Microorganisms. <i>Trends in Biotechnology</i> , 2017 , 35, 860-870	15.1	97
224	Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). <i>Applied and Environmental Microbiology</i> , 2009 , 75, 3281-8	4.8	96
223	Phylogenomic evidence for the presence of a flagellum and cbb(3) oxidase in the free-living mitochondrial ancestor. <i>Molecular Biology and Evolution</i> , 2011 , 28, 3285-96	8.3	95
222	Environmental conditions and community evenness determine the outcome of biological invasion. <i>Nature Communications</i> , 2013 , 4, 1383	17.4	92
221	Microbial symbionts: a resource for the management of insect-related problems. <i>Microbial Biotechnology</i> , 2012 , 5, 307-17	6.3	89
220	Thuricin 7: a novel bacteriocin produced by Bacillus thuringiensis BMG1.7, a new strain isolated from soil. <i>Letters in Applied Microbiology</i> , 2001 , 32, 243-7	2.9	87
219	Mineral-microbe interactions: biotechnological potential of bioweathering. <i>Journal of Biotechnology</i> , 2012 , 157, 473-81	3.7	83
218	Oasis desert farming selects environment-specific date palm root endophytic communities and cultivable bacteria that promote resistance to drought. <i>Environmental Microbiology Reports</i> , 2015 , 7, 668-78	3.7	82
217	Multiple symbiosis in the leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): details of transovarial transmission of Cardinium sp. and yeast-like endosymbionts. <i>Tissue and Cell</i> , 2008 , 40, 231-4	1 2 .7	80
216	Bacterial population and biodegradation potential in chronically crude oil-contaminated marine sediments are strongly linked to temperature. <i>Scientific Reports</i> , 2015 , 5, 11651	4.9	78
215	Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. <i>FEMS Microbiology Ecology</i> , 2012 , 80, 566-77	4.3	77
214	Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non transgenic counterpart. <i>Plant and Soil</i> , 2005 , 266, 11-21	4.2	77
213	Plant-associated microbiomes in arid lands: diversity, ecology and biotechnological potential. <i>Plant and Soil</i> , 2016 , 405, 357-370	4.2	73

212	Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. <i>Journal of Microbiology</i> , 2009 , 47, 393-401	3	73
211	Improved methodology for bioremoval of black crusts on historical stone artworks by use of sulfate-reducing bacteria. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 3733-7	4.8	73
210	A novel Bacteroidetes symbiont is localized in Scaphoideus titanus, the insect vector of Flavescence dor in Vitis vinifera. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 1467-75	4.8	73
209	Genomic subpopulations within the species Pediococcus acidilactici detected by multilocus typing analysis: relationships between pediocin AcH/PA-1 producing and non-producing strains. <i>Microbiology (United Kingdom)</i> , 2000 , 146 (Pt 8), 2027-2038	2.9	73
208	Rock weathering creates oases of life in a high Arctic desert. Environmental Microbiology, 2010, 12, 293-	-39023	72
207	Detection and characterization of the novel bacteriocin entomocin 9, and safety evaluation of its producer, Bacillus thuringiensis ssp. entomocidus HD9. <i>Journal of Applied Microbiology</i> , 2003 , 95, 990-10	o ∂ ø	71
206	Bacteria of the genus Asaia: a potential paratransgenic weapon against malaria. <i>Advances in Experimental Medicine and Biology</i> , 2008 , 627, 49-59	3.6	70
205	Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 5018-22	4.8	69
204	Are drought-resistance promoting bacteria cross-compatible with different plant models?. <i>Plant Signaling and Behavior</i> , 2013 , 8,	2.5	68
203	Molecular evidence for multiple infections as revealed by typing of Asaia bacterial symbionts of four mosquito species. <i>Applied and Environmental Microbiology</i> , 2010 , 76, 7444-50	4.8	67
202	'Candidatus Liberibacter europaeus' sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. <i>Environmental Microbiology</i> , 2011 , 13, 414-26	5.2	66
201	Microbial community structure and dynamics in two-stage vs single-stage thermophilic anaerobic digestion of mixed swine slurry and market bio-waste. <i>Water Research</i> , 2013 , 47, 1983-95	12.5	64
200	Visual evidence of horizontal gene transfer between plants and bacteria in the phytosphere of transplastomic tobacco. <i>Applied and Environmental Microbiology</i> , 2009 , 75, 3314-22	4.8	61
199	Nature of polymorphisms in 16S-23S rRNA gene intergenic transcribed spacer fingerprinting of Bacillus and related genera. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 5128-37	4.8	61
198	Genetic relationship in the 'Bacillus cereus group' by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. <i>Journal of Applied Microbiology</i> , 2003 , 94, 1108-19	4.7	61
197	A randomly amplified polymorphic DNA marker specific for the Bacillus cereus group is diagnostic for Bacillus anthracis. <i>Applied and Environmental Microbiology</i> , 1999 , 65, 1298-303	4.8	61
196	Bacillus anthracis diverges from related clades of the Bacillus cereus group in 16S-23S ribosomal DNA intergenic transcribed spacers containing tRNA genes. <i>Applied and Environmental Microbiology</i> , 2003 , 69, 33-40	4.8	58
195	A conceptual framework for invasion in microbial communities. <i>ISME Journal</i> , 2016 , 10, 2773-2775	11.9	58

(2018-2018)

194	Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. <i>Microbiome</i> , 2018 , 6, 215	16.6	58	
193	Plant-mediated interspecific horizontal transmission of an intracellular symbiont in insects. <i>Scientific Reports</i> , 2015 , 5, 15811	4.9	57	
192	A novel reductive dehalogenase, identified in a contaminated groundwater enrichment culture and in Desulfitobacterium dichloroeliminans strain DCA1, is linked to dehalogenation of 1,2-dichloroethane. <i>Applied and Environmental Microbiology</i> , 2007 , 73, 2990-9	4.8	57	
191	The stability and degradation of dietary DNA in the gastrointestinal tract of mammals: implications for horizontal gene transfer and the biosafety of GMOs. <i>Critical Reviews in Food Science and Nutrition</i> , 2012 , 52, 142-61	11.5	56	
190	Different mosquito species host Wickerhamomyces anomalus (Pichia anomala): perspectives on vector-borne diseases symbiotic control. <i>Antonie Van Leeuwenhoek</i> , 2011 , 99, 43-50	2.1	55	
189	Biotransformations of cinnamic and ferulic acid with actinomycetes. <i>Enzyme and Microbial Technology</i> , 2004 , 34, 3-9	3.8	55	
188	Response of bacterial community during bioremediation of an oil-polluted soil. <i>Journal of Applied Microbiology</i> , 2003 , 94, 248-57	4.7	55	
187	Effects of the diet on the microbiota of the red palm weevil (Coleoptera: Dryophthoridae). <i>PLoS ONE</i> , 2015 , 10, e0117439	3.7	54	
186	Acetic acid bacteria genomes reveal functional traits for adaptation to life in insect guts. <i>Genome Biology and Evolution</i> , 2014 , 6, 912-20	3.9	53	
185	Measuring the role of seagrasses in regulating sediment surface elevation. <i>Scientific Reports</i> , 2017 , 7, 11917	4.9	52	
184	Characterization and partial purification of entomocin 110, a newly identified bacteriocin from Bacillus thuringiensis subsp. Entomocidus HD110. <i>Microbiological Research</i> , 2008 , 163, 684-92	5.3	52	
183	Effects of municipal solid waste compost, farmyard manure and chemical fertilizers on wheat growth, soil composition and soil bacterial characteristics under Tunisian arid climate. <i>European Journal of Soil Biology</i> , 2009 , 45, 138-145	2.9	51	
182	Interactions between Asaia, Plasmodium and Anopheles: new insights into mosquito symbiosis and implications in malaria symbiotic control. <i>Parasites and Vectors</i> , 2013 , 6, 182	4	50	
181	Halo-alkalitolerant and thermostable cellulases with improved tolerance to ionic liquids and organic solvents from Paenibacillus tarimensis isolated from the Chott El Fejej, Sahara desert, Tunisia. <i>Bioresource Technology</i> , 2013 , 150, 121-8	11	50	
180	Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2009 , 276, 2485-91	4.4	50	
179	Bacterial endosymbiont localization in Hyalesthes obsoletus, the insect vector of Bois noir in Vitis vinifera. <i>Applied and Environmental Microbiology</i> , 2011 , 77, 1423-35	4.8	50	
178	16S-23S rRNA internal transcribed spacers as molecular markers for the species of the 16S rRNA group I of the genus Bacillus. <i>FEMS Microbiology Letters</i> , 1998 , 163, 229-36	2.9	49	
177	The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence. <i>ISME Journal</i> , 2018 , 12, 1188-1198	11.9	48	

176	The yeast Wickerhamomyces anomalus (Pichia anomala) inhabits the midgut and reproductive system of the Asian malaria vector Anopheles stephensi. <i>Environmental Microbiology</i> , 2011 , 13, 911-21	5.2	48
175	Characterization of urease genes cluster of Streptococcus thermophilus. <i>Journal of Applied Microbiology</i> , 2004 , 96, 209-19	4.7	48
174	A Chloroflexi bacterium dechlorinates polychlorinated biphenyls in marine sediments under in situ-like biogeochemical conditions. <i>Journal of Hazardous Materials</i> , 2012 , 209-210, 449-57	12.8	47
173	DNA is preserved and maintains transforming potential after contact with brines of the deep anoxic hypersaline lakes of the Eastern Mediterranean Sea. <i>Saline Systems</i> , 2008 , 4, 10		47
172	Stone-dwelling actinobacteria Blastococcus saxobsidens, Modestobacter marinus and Geodermatophilus obscurus proteogenomes. <i>ISME Journal</i> , 2016 , 10, 21-9	11.9	46
171	16S-23S rRNA intergenic spacer region sequence variation in Streptococcus thermophilus and related dairy streptococci and development of a multiplex ITS-SSCP analysis for their identification. <i>Microbiology (United Kingdom)</i> , 2003 , 149, 807-813	2.9	46
170	Allochthonous bioaugmentation in ex situ treatment of crude oil-polluted sediments in the presence of an effective degrading indigenous microbiome. <i>Journal of Hazardous Materials</i> , 2015 , 287, 78-86	12.8	45
169	Usefulness of length heterogeneity-PCR for monitoring lactic acid bacteria succession during maize ensiling. <i>FEMS Microbiology Ecology</i> , 2006 , 56, 154-64	4.3	45
168	Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. <i>FEMS Microbiology Letters</i> , 2004 , 234, 349-355	2.9	45
167	Screening of plant growth promoting traits ofBacillus thuringiensis. <i>Annals of Microbiology</i> , 2008 , 58, 47-52	3.2	44
166	Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 1295-301	4.8	44
165	Bacterial endophytes of mangrove propagules elicit early establishment of the natural host and promote growth of cereal crops under salt stress. <i>Microbiological Research</i> , 2019 , 223-225, 33-43	5.3	43
164	Thermal specialization across large geographical scales predicts the resilience of mangrove crab populations to global warming. <i>Oikos</i> , 2015 , 124, 784-795	4	42
163	16SIJ3S rRNA internal transcribed spacers as molecular markers for the species of the 16S rRNA group I of the genus Bacillus. <i>FEMS Microbiology Letters</i> , 1998 , 163, 229-236	2.9	41
162	Horizontal transmission of the symbiotic bacterium Asaia sp. in the leafhopper Scaphoideus titanus Ball (Hemiptera: Cicadellidae). <i>BMC Microbiology</i> , 2012 , 12 Suppl 1, S4	4.5	40
161	Hindering biofilm formation with zosteric acid. <i>Biofouling</i> , 2010 , 26, 739-52	3.3	40
160	Isolation and characterization of non-Frankia actinobacteria from root nodules of Alnus glutinosa, Casuarina glauca and Elaeagnus angustifolia. <i>Symbiosis</i> , 2010 , 50, 51-57	3	40
159	Root bacterial endophytes confer drought resistance and enhance expression and activity of a vacuolar H -pumping pyrophosphatase in pepper plants. <i>Environmental Microbiology</i> , 2018 , 21, 3212	5.2	39

158	Evolution of mitochondria reconstructed from the energy metabolism of living bacteria. <i>PLoS ONE</i> , 2014 , 9, e96566	3.7	39	
157	Water Disinfection Byproducts Increase Natural Transformation Rates of Environmental DNA in Acinetobacter baylyi ADP1. <i>Environmental Science & Environmental Environmen</i>	10.3	38	
156	A horizon scan of priorities for coastal marine microbiome research. <i>Nature Ecology and Evolution</i> , 2019 , 3, 1509-1520	12.3	37	
155	Biodiversity of prokaryotic communities in sediments of different sub-basins of the Venice lagoon. <i>Research in Microbiology</i> , 2009 , 160, 307-14	4	37	
154	Characterization of the microbial community from the marine sediment of the Venice lagoon capable of reductive dechlorination of coplanar polychlorinated biphenyls (PCBs). <i>Journal of Hazardous Materials</i> , 2010 , 178, 417-26	12.8	37	
153	Laboratory-scale experiments with a powdered compost biofilter treating benzene-polluted air. <i>Process Biochemistry</i> , 2005 , 40, 2035-2043	4.8	37	
152	Microbial oil-degradation under mild hydrostatic pressure (10 MPa): which pathways are impacted in piezosensitive hydrocarbonoclastic bacteria?. <i>Scientific Reports</i> , 2016 , 6, 23526	4.9	36	
151	Anammox bacterial populations in deep marine hypersaline gradient systems. <i>Extremophiles</i> , 2013 , 17, 289-99	3	36	
150	Characterization of the bacterial community associated with larvae and adults of Anoplophora chinensis collected in Italy by culture and culture-independent methods. <i>BioMed Research International</i> , 2013 , 2013, 420287	3	36	
149	Microbial succession in a compost-packed biofilter treating benzene-contaminated air. <i>Biodegradation</i> , 2006 , 17, 181-91	4.1	34	
148	Strategy for in situ detection of natural transformation-based horizontal gene transfer events. <i>Applied and Environmental Microbiology</i> , 2008 , 74, 1250-4	4.8	33	
147	Diversity and phylogeny of culturable spore-forming Bacilli isolated from marine sediments. <i>Journal of Basic Microbiology</i> , 2009 , 49 Suppl 1, S13-23	2.7	32	
146	Urease biogenesis in Streptococcus thermophilus. <i>Research in Microbiology</i> , 2005 , 156, 897-903	4	32	
145	Single strand conformation polymorphism analysis of PCR-tDNA fingerprinting to address the identification of Bacillus species. <i>FEMS Microbiology Letters</i> , 1997 , 157, 87-93	2.9	32	
144	Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. <i>Scientific Reports</i> , 2019 , 9, 3749	4.9	31	
143	Olfactory attraction of Drosophila suzukii by symbiotic acetic acid bacteria. <i>Journal of Pest Science</i> , 2016 , 89, 783-792	5.5	31	
142	Bacterial diversity shift determined by different diets in the gut of the spotted wing fly Drosophila suzukii is primarily reflected on acetic acid bacteria. <i>Environmental Microbiology Reports</i> , 2017 , 9, 91-103	3.7	31	
141	Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments. <i>BioMed Research International</i> 2013, 2013, 491091	3	31	

140	Salicornia strobilacea (Synonym of Halocnemum strobilaceum) Grown under Different Tidal Regimes Selects Rhizosphere Bacteria Capable of Promoting Plant Growth. <i>Frontiers in Microbiology</i> , 2016 , 7, 1286	5.7	31
139	Genetic diversity among Elaeagnus compatible Frankia strains and sympatric-related nitrogen-fixing actinobacteria revealed by nifH sequence analysis. <i>Soil Biology and Biochemistry</i> , 2007 , 39, 372-377	7.5	30
138	Bioremediation of Southern Mediterranean oil polluted sites comes of age. <i>New Biotechnology</i> , 2013 , 30, 743-8	6.4	29
137	Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on arctic moraines. <i>Microbial Ecology</i> , 2011 , 61, 438-47	4.4	29
136	Esterase as an enzymatic signature of Geodermatophilaceae adaptability to Sahara desert stones and monuments. <i>Journal of Applied Microbiology</i> , 2010 , 108, 1723-32	4.7	29
135	Treatment of benzene-contaminated airstreams in laboratory-scale biofilters packed with raw and sieved sugarcane bagasse and with peat. <i>Biodegradation</i> , 2004 , 15, 87-96	4.1	29
134	The role of environmental biotechnology in exploring, exploiting, monitoring, preserving, protecting and decontaminating the marine environment. <i>New Biotechnology</i> , 2015 , 32, 157-67	6.4	28
133	Hydrocarbon pollutants shape bacterial community assembly of harbor sediments. <i>Marine Pollution Bulletin</i> , 2016 , 104, 211-20	6.7	28
132	Shifts of microbial community structure during anaerobic digestion of agro-industrial energetic crops and food industry byproducts. <i>Journal of Chemical Technology and Biotechnology</i> , 2012 , 87, 1302	-13ें∳1	28
131	Anaerobic digestion of print pastes: A preliminary screening of inhibition by dyes and biodegradability of thickeners. <i>Bioresource Technology</i> , 1998 , 63, 49-56	11	28
130	The trade-off between heat tolerance and metabolic cost drives the bimodal life strategy at the air-water interface. <i>Scientific Reports</i> , 2016 , 6, 19158	4.9	28
129	An impaired metabolic response to hydrostatic pressure explains Alcanivorax borkumensis recorded distribution in the deep marine water column. <i>Scientific Reports</i> , 2016 , 6, 31316	4.9	27
128	Successful combination of chemical and biological treatments for the cleaning of stone artworks. <i>International Biodeterioration and Biodegradation</i> , 2013 , 85, 294-304	4.8	27
127	Root-associated bacteria promote grapevine growth: from the laboratory to the field. <i>Plant and Soil</i> , 2017 , 410, 369-382	4.2	27
126	Characterization of polyvalent and safe Bacillus thuringiensis strains with potential use for biocontrol. <i>Journal of Basic Microbiology</i> , 2009 , 49, 293-303	2.7	27
125	Genome sequence of radiation-resistant Modestobacter marinus strain BC501, a representative actinobacterium that thrives on calcareous stone surfaces. <i>Journal of Bacteriology</i> , 2012 , 194, 4773-4	3.5	27
124	Lead-resistant microorganisms from red stains of marble of the Certosa of Pavia, Italy and use of nucleic acid-based techniques for their detection. <i>International Biodeterioration and Biodegradation</i> , 1997 , 40, 171-182	4.8	27
123	Ultrastructure of a novel Cardinium sp. symbiont in Scaphoideus titanus (Hemiptera: Cicadellidae). <i>Tissue and Cell</i> , 2006 , 38, 257-61	2.7	27

(2010-2016)

122	Ecological status and sources of anthropogenic contaminants in mangroves of the Wouri River Estuary (Cameroon). <i>Marine Pollution Bulletin</i> , 2016 , 109, 723-33	6.7	27
121	Oxygen supersaturation protects coastal marine fauna from ocean warming. <i>Science Advances</i> , 2019 , 5, eaax1814	14.3	26
120	The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. <i>BioMed Research International</i> , 2015 , 2015, 153851	3	26
119	Alkalizing reactions streamline cellular metabolism in acidogenic microorganisms. <i>PLoS ONE</i> , 2010 , 5, e15520	3.7	26
118	Toward unrestricted use of public genomic data. <i>Science</i> , 2019 , 363, 350-352	33.3	25
117	Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. <i>SpringerPlus</i> , 2014 , 3, 391		25
116	Aromatic hydrocarbon degradation patterns and catechol 2,3-dioxygenase genes in microbial cultures from deep anoxic hypersaline lakes in the eastern Mediterranean sea. <i>Microbiological Research</i> , 2001 , 156, 49-58	5.3	25
115	Gammaproteobacteria occurrence and microdiversity in Tyrrhenian Sea sediments as revealed by cultivation-dependent and -independent approaches. <i>Systematic and Applied Microbiology</i> , 2010 , 33, 222-31	4.2	24
114	Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains. <i>Annals of Microbiology</i> , 2007 , 57, 481-494	3.2	24
113	Characterization of a repetitive element polymorphism-polymerase chain reaction chromosomal marker that discriminates Bacillus anthracis from related species. <i>Journal of Applied Microbiology</i> , 2002 , 93, 456-62	4.7	24
112	Microbial ecology of deep-sea hypersaline anoxic basins. FEMS Microbiology Ecology, 2018, 94,	4.3	24
111	Dispersal homogenizes communities via immigration even at low rates in a simplified synthetic bacterial metacommunity. <i>Nature Communications</i> , 2019 , 10, 1314	17.4	23
110	Genome sequence of Blastococcus saxobsidens DD2, a stone-inhabiting bacterium. <i>Journal of Bacteriology</i> , 2012 , 194, 2752-3	3.5	23
109	Bacterial community diversity assessment in municipal solid waste compost amended soil using DGGE and ARISA fingerprinting methods. <i>World Journal of Microbiology and Biotechnology</i> , 2008 , 24, 1159-1167	4.4	23
108	Mosquito symbioses: from basic research to the paratransgenic control of mosquito-borne diseases. <i>Journal of Applied Entomology</i> , 2011 , 135, 487-493	1.7	22
107	Diversity of auxin-producing bacteria associated to Pseudomonas savastanoi -induced olive knots. Journal of Basic Microbiology, 2008 , 48, 370-7	2.7	22
106	Response of ammonia oxidizing bacteria and archaea to acute zinc stress and different moisture regimes in soil. <i>Microbial Ecology</i> , 2012 , 64, 1028-37	4.4	21
105	Bacterial diversity and reductive dehalogenase redundancy in a 1,2-dichloroethane-degrading bacterial consortium enriched from a contaminated aquifer. <i>Microbial Cell Factories</i> , 2010 , 9, 12	6.4	21

104	Incidence of Candidatus Liberibacter europaeus and phytoplasmas in Cacopsylla species (Hemiptera: Psyllidae) and their host/shelter plants. <i>Phytoparasitica</i> , 2012 , 40, 213-221	1.5	20
103	Biogeography of planktonic bacterial communities across the whole Mediterranean Sea. <i>Ocean Science</i> , 2013 , 9, 585-595	4	20
102	Fluorescent-BOX-PCR for resolving bacterial genetic diversity, endemism and biogeography. <i>BMC Microbiology</i> , 2008 , 8, 220	4.5	20
101	Diversity of Bacillus anthracis strains in Georgia and of vaccine strains from the former Soviet Union. <i>Applied and Environmental Microbiology</i> , 2006 , 72, 5631-6	4.8	20
100	Response of 1,2-dichloroethane-adapted microbial communities to ex-situ biostimulation of polluted groundwater. <i>Biodegradation</i> , 2006 , 17, 143-58	4.1	20
99	Marine microorganisms as source of stereoselective esterases and ketoreductases: kinetic resolution of a prostaglandin intermediate. <i>Marine Biotechnology</i> , 2015 , 17, 144-52	3.4	19
98	Acquisition of Extracellular DNA by ADP1 in Response to Solar and UV-C Disinfection. <i>Environmental Science & Environmental Sc</i>	10.3	19
97	Hydrocarbonoclastic Isolates Exhibit Different Physiological and Expression Responses to -dodecane. <i>Frontiers in Microbiology</i> , 2016 , 7, 2056	5.7	19
96	The Red Sea: Environmental Gradients Shape a Natural Laboratory in a Nascent Ocean. <i>Coral Reefs of the World</i> , 2019 , 1-10	2.1	18
95	Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation. <i>Frontiers in Microbiology</i> , 2017 , 8, 1385	5.7	18
94	Degradation Network Reconstruction in Uric Acid and Ammonium Amendments in Oil-Degrading Marine Microcosms Guided by Metagenomic Data. <i>Frontiers in Microbiology</i> , 2015 , 6, 1270	5.7	17
93	Hydrolytic Profile of the Culturable Gut Bacterial Community Associated With. <i>Frontiers in Microbiology</i> , 2020 , 11, 1965	5.7	17
92	The role of fungi in heterogeneous sediment microbial networks. <i>Scientific Reports</i> , 2019 , 9, 7537	4.9	16
91	Consistent bacterial selection by date palm root system across heterogeneous desert oasis agroecosystems. <i>Scientific Reports</i> , 2019 , 9, 4033	4.9	16
90	Ensuring safety in artisanal food microbiology. <i>Nature Microbiology</i> , 2016 , 1, 16171	26.6	16
89	The autolytic phenotype of the Bacillus cereus group. <i>Journal of Applied Microbiology</i> , 2005 , 99, 1070-8	14.7	15
88	Developmental stages and gut microenvironments influence gut microbiota dynamics in the invasive beetle Popillia japonica Newman (Coleoptera: Scarabaeidae). <i>Environmental Microbiology</i> , 2019 , 21, 4343-4359	5.2	14
87	Safe-site effects on rhizosphere bacterial communities in a high-altitude alpine environment. BioMed Research International, 2014, 2014, 480170	3	14

86	Rehabilitation of Mediterranean anthropogenic soils using symbiotic wild legume shrubs: Plant establishment and impact on the soil bacterial community structure. <i>Applied Soil Ecology</i> , 2010 , 46, 1-8	5	14	
85	Response of methanogen populations to organic load increase during anaerobic digestion of olive mill wastewater. <i>Journal of Chemical Technology and Biotechnology</i> , 2006 , 81, 1556-1562	3.5	14	
84	The autolytic phenotype of Bacillus thuringiensis. <i>Journal of Applied Microbiology</i> , 2004 , 97, 158-68	4.7	14	
83	High denitrification and anaerobic ammonium oxidation contributes to net nitrogen loss in a seagrass ecosystem in the central Red Sea. <i>Biogeosciences</i> , 2018 , 15, 7333-7346	4.6	14	
82	Chimeric symbionts expressing a Wolbachia protein stimulate mosquito immunity and inhibit filarial parasite development. <i>Communications Biology</i> , 2020 , 3, 105	6.7	13	
81	Asaia symbionts interfere with infection by Flavescence dor phytoplasma in leafhoppers. <i>Journal of Pest Science</i> , 2018 , 91, 1033-1046	5.5	13	
80	Modified niche optima and breadths explain the historical contingency of bacterial community responses to eutrophication in coastal sediments. <i>Molecular Ecology</i> , 2017 , 26, 2006-2018	5.7	13	
79	Sex and stripping: The key to the intimate relationship between Wolbachia and host?. <i>Communicative and Integrative Biology</i> , 2010 , 3, 110-5	1.7	13	
78	Isolation of Elaeagnus-compatible Frankia from soils collected in Tunisia. <i>FEMS Microbiology Letters</i> , 2004 , 234, 349-55	2.9	13	
77	Diversity, ecological distribution and biotechnological potential of Actinobacteria inhabiting seamounts and non-seamounts in the Tyrrhenian Sea. <i>Microbiological Research</i> , 2016 , 186-187, 71-80	5.3	13	
76	Direct quantification of ecological drift at the population level in synthetic bacterial communities. <i>ISME Journal</i> , 2021 , 15, 55-66	11.9	13	
75	A three-scale analysis of bacterial communities involved in rocks colonization and soil formation in high mountain environments. <i>Current Microbiology</i> , 2013 , 67, 472-9	2.4	12	
74	Interspecific, intraspecific and interoperonic variability in the 16S rRNA gene of methanogens revealed by length and single-strand conformation polymorphism analysis. <i>FEMS Microbiology Letters</i> , 1998 , 164, 403-10	2.9	12	
73	Anaerobic digestion of wastes containing pyrolignitic acids. <i>Biological Wastes</i> , 1990 , 34, 203-214		12	
72	Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems. <i>MSystems</i> , 2020 , 5,	7.6	12	
71	Enrichment of sp. and Halophilic Homoacetogens at the Biocathode of Microbial Electrosynthesis System Inoculated With Red Sea Brine Pool. <i>Frontiers in Microbiology</i> , 2019 , 10, 2563	5.7	12	
70	Conversion of Uric Acid into Ammonium in Oil-Degrading Marine Microbial Communities: a Possible Role of Halomonads. <i>Microbial Ecology</i> , 2015 , 70, 724-40	4.4	11	
69	Prokaryotic and eukaryotic microbial community responses to N and P nutrient addition in oligotrophic Mediterranean coastal waters: Novel insights from DNA metabarcoding and network analysis. <i>Marine Environmental Research</i> , 2019 , 150, 104752	3.3	11	

68	Bacterial Diversity and Bioremediation Potential of the Highly Contaminated Marine Sediments at El-Max District (Egypt, Mediterranean Sea). <i>BioMed Research International</i> , 2015 , 2015, 981829	3	11
67	ULIXES, unravelling and exploiting Mediterranean Sea microbial diversity and ecology for xenobiotics and pollutants clean up. Reviews in Environmental Science and Biotechnology, 2012, 11, 2079	-2 ¹ 1319	11
66	The Most Important Bacillus Species in Biotechnology 2012 , 329-345		11
65	Low-dose addition of silver nanoparticles stresses marine plankton communities. <i>Environmental Science: Nano</i> , 2018 , 5, 1965-1980	7.1	10
64	Do mosquito-associated bacteria of the genus Asaia circulate in humans?. <i>European Journal of Clinical Microbiology and Infectious Diseases</i> , 2012 , 31, 1137-40	5.3	10
63	Influence of transgenic Bt176 and non-transgenic corn silage on the structure of rumen bacterial communities. <i>Annals of Microbiology</i> , 2011 , 61, 925-930	3.2	10
62	Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. <i>Canadian Journal of Microbiology</i> , 2007 , 53, 343-50	3.2	10
61	Specific Bacillus anthracis identification by a plcR-targeted restriction site insertion-PCR (RSI-PCR) assay. <i>FEMS Microbiology Letters</i> , 2007 , 272, 55-9	2.9	10
60	Detection of feed-derived maize DNA in goat milk and evaluation of the potential of horizontal transfer to bacteria. <i>European Food Research and Technology</i> , 2008 , 227, 1699-1709	3.4	10
59	Discovery of Afifi, the shallowest and southernmost brine pool reported in the Red Sea. <i>Scientific Reports</i> , 2020 , 10, 910	4.9	9
58	Bacterial polyextremotolerant bioemulsifiers from arid soils improve water retention capacity and humidity uptake in sandy soil. <i>Microbial Cell Factories</i> , 2018 , 17, 83	6.4	9
57	Exploration of methods used to describe bacterial communities in silage of maize (Zea mays) cultivars. <i>Environmental Biosafety Research</i> , 2008 , 7, 25-33		9
56	Occurrence and diversity of Frankia in Tunisian soil. <i>Physiologia Plantarum</i> , 2007 , 130, 372-379	4.6	9
55	Restriction site insertion-PCR (RSI-PCR) for rapid discrimination and typing of closely related microbial strains. <i>FEMS Microbiology Letters</i> , 1999 , 180, 77-83	2.9	9
54	Different types of sludge granules in UASB reactors treating acidified wastewaters. <i>Antonie Van Leeuwenhoek</i> , 1995 , 68, 329-37	2.1	9
53	Diverse Reductive Dehalogenases Are Associated with Clostridiales-Enriched Microcosms Dechlorinating 1,2-Dichloroethane. <i>BioMed Research International</i> , 2015 , 2015, 242856	3	8
52	Plant-Microbe Interactions and Water Management in Arid and Saline Soils 2015 , 265-276		8
51	Genotypic diversity, antibiotic resistance and bacteriocin production of enterococci isolated from rhizospheres. <i>Microbes and Environments</i> , 2012 , 27, 533-7	2.6	8

(2019-2006)

50	A novel phenotype based on esterase electrophoretic polymorphism for the differentiation of Lactococcus lactis ssp. lactis and cremoris. <i>Letters in Applied Microbiology</i> , 2006 , 43, 351-9	2.9	8
49	Self-healing capacity of deep-sea ecosystems affected by petroleum hydrocarbons: Understanding microbial oil degradation at hydrocarbon seeps is key to sustainable bioremediation protocols. <i>EMBO Reports</i> , 2017 , 18, 868-872	6.5	7
48	Cultivable hydrocarbon degrading bacteria have low phylogenetic diversity but highly versatile functional potential. <i>International Biodeterioration and Biodegradation</i> , 2019 , 142, 43-51	4.8	7
47	Low prevalence of blaTEM genes in Arctic environments and agricultural soil and rhizosphere. <i>Microbial Ecology in Health and Disease</i> , 2008 , 20, 27-36		7
46	Some Bacillus thuringiensis strains share rpoB nucleotide polymorphisms also present in Bacillus anthracis. <i>Journal of Clinical Microbiology</i> , 2006 , 44, 1606-7	9.7	7
45	Assessment of the genetic diversity of Frankia microsymbionts of Elaeagnus angustifolia L. plants growing in a Tunisian date-palm oasis by analysis of PCR amplified nifD-K intergenic spacer. <i>Canadian Journal of Microbiology</i> , 2007 , 53, 440-5	3.2	7
44	Thermal sensitivity of the crab Neosarmatium africanum in tropical and temperate mangroves on the east coast of Africa. <i>Hydrobiologia</i> , 2017 , 803, 251-263	2.4	6
43	Microbial diversity in deep hypersaline anoxic basins 2012 , 21-36		6
42	Draft Genome Sequences of Two Multidrug Resistant Klebsiella pneumoniae ST258 Isolates Resistant to Colistin. <i>Genome Announcements</i> , 2013 , 1,		6
41	Genetic and biochemical diversity of Paenibacillus larvae isolated from Tunisian infected honey bee broods. <i>BioMed Research International</i> , 2013 , 2013, 479893	3	6
40	Effects of rhizodeposition of non-transgenic and transplastomic tobaccos on the soil bacterial community. <i>Environmental Biosafety Research</i> , 2008 , 7, 11-24		6
39	Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. <i>Npj Biofilms and Microbiomes</i> , 2021 , 7, 42	8.2	6
38	Investing in Blue Natural Capital to Secure a Future for the Red Sea Ecosystems. <i>Frontiers in Marine Science</i> , 2021 , 7,	4.5	6
37	Draft Genome Sequence of the Hydrocarbon-Degrading Bacterium Alcanivorax dieselolei KS-293 Isolated from Surface Seawater in the Eastern Mediterranean Sea. <i>Genome Announcements</i> , 2015 , 3,		5
36	Effects of the herbicide molinate on the metabolic activities of a degradative Streptomyces griseus strain. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 1996 , 31, 257-268	2.2	5
35	Identification of molecular markers to follow up the bioremediation of sites contaminated with chlorinated compounds. <i>Methods in Molecular Biology</i> , 2010 , 668, 219-34	1.4	5
34	The Family Geodermatophilaceae 2014 , 361-379		5
33	Phenomics and Genomics Reveal Adaptation of Strain 21D to Its Origin of Isolation, the Seawater-Brine Interface of the Mediterranean Sea Deep Hypersaline Anoxic Basin Discovery. <i>Frontiers in Microbiology</i> , 2019 , 10, 1304	5.7	4

32	Draft Genome of Klebsiella pneumoniae Sequence Type 512, a Multidrug-Resistant Strain Isolated during a Recent KPC Outbreak in Italy. <i>Genome Announcements</i> , 2013 , 1,		4
31	International Entomology. <i>American Entomologist</i> , 2012 , 58, 234-246	0.6	4
30	Microbial Life in Volcanic Lakes. Advances in Volcanology, 2015 , 507-522	О	4
29	High temperature and crab density reduce atmospheric nitrogen fixation in Red Sea mangrove sediments. <i>Estuarine, Coastal and Shelf Science</i> , 2020 , 232, 106487	2.9	4
28	Highly divergent Mollicutes symbionts coexist in the scorpion Androctonus australis. <i>Journal of Basic Microbiology</i> , 2018 , 58, 827-835	2.7	3
27	Heteroduplex structures in 16S-23S rRNA intergenic transcribed spacer PCR products reveal ribosomal interoperonic polymorphisms within single Frankia strains. <i>Journal of Applied Microbiology</i> , 2007 , 103, 1031-40	4.7	3
26	Balancing the loss and acquisition of pathogenic traits in food-associated bacteria. <i>Microbiology</i> (United Kingdom), 2005 , 151, 3814-3816	2.9	3
25	Activity and evolution of mixed microbial culture degrading molinate. <i>Science of the Total Environment</i> , 1992 , 123-124, 309-323	10.2	3
24	Interspecific, intraspecific and interoperonic variability in the 16S rRNA gene of methanogens revealed by length and single-strand conformation polymorphism analysis		3
23	The effect of plant domestication on host control of the microbiota. <i>Communications Biology</i> , 2021 , 4, 936	6.7	3
22	Nature-Inspired Superhydrophobic Sand Mulches Increase Agricultural Productivity and Water-Use Efficiency in Arid Regions. <i>ACS Agricultural Science and Technology</i> ,		3
21	Extreme Marine Environments (Brines, Seeps, and Smokers) 2016 , 251-282		2
20	Acetic Acid Bacteria as Symbionts of Insects 2016 , 121-142		2
19	Microbial Diversity and Biotechnological Potential of Microorganisms Thriving in the Deep-Sea Brine Pools 2018 , 19-32		2
18	The Importance of Larval Stages for Considering Crab Microbiomes as a Paradigm for the Evolution of Terrestrialization. <i>Frontiers in Microbiology</i> , 2021 , 12, 770245	5.7	2
17	An Updated View of the Microbial Diversity in Deep Hypersaline Anoxic Basins 2017 , 23-40		2
16	Viral Metagenomic Content Reflects Seawater Ecological Quality in the Coastal Zone. <i>Viruses</i> , 2020 , 12,	6.2	2
15	Disruption of Host-Symbiont Associations for the Symbiotic Control and Management of Pentatomid Agricultural Pests-A Review. <i>Frontiers in Microbiology</i> , 2020 , 11, 547031	5.7	2

LIST OF PUBLICATIONS

Fine-scale metabolic discontinuity in a stratified prokaryote microbiome of a Red Sea deep halocline. <i>ISME Journal</i> , 2021 , 15, 2351-2365	11.9	2	
gen. nov., sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed family within the order Rhizobiales. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2021 , 71,	2.2	2	
The Impact of the Inoculation of Phosphate-Solubilizing Bacteria on Phosphorus Availability and Bacterial Community Dynamics of a Semi-Arid Soil. <i>Microorganisms</i> , 2021 , 9,	4.9	2	
Insights Into the Cultivable Bacterial Fraction of Sediments From the Red Sea Mangroves and Physiological, Chemotaxonomic, and Genomic Characterization of gen. nov., sp. nov., a Novel Member of the Family <i>Frontiers in Microbiology</i> , 2022 , 13, 777986	5.7	2	
Rhizosheath-root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment <i>Environmental Microbiomes</i> , 2022 , 17, 14	5.6	2	
Anaerobic digestion of olive mill effluents: Microbiological and processing aspects. <i>Journal of Environmental Science and Health Part A: Environmental Science and Engineering</i> , 1993 , 28, 2041-2059		1	
gen. nov., sp. nov., a moderately halophilic bacterium isolated from bioturbated Red Sea mangrove sediment, and proposal of the novel family fam. nov. <i>International Journal of Systematic and Evolutionary Microbiology</i> , 2021 , 71,	2.2	1	
Aridity modulates belowground bacterial community dynamics in olive tree. <i>Environmental Microbiology</i> , 2021 , 23, 6275-6291	5.2	1	
Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams <i>Nature Communications</i> , 2022 , 13, 2168	17.4	1	
Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts <i>Microbiology Spectrum</i> , 2022 , e0158021	8.9	О	
Invertebrate Gut Associations 2015 , 4.4.1-1-4.4.1-7			
Contribution of Tamarix aphylla to soil organic matter evolution in a natural semi-desert area in Tunisia. <i>Journal of Arid Environments</i> , 2022 , 196, 104639	2.5		
			ď
Bacillus anthracis 2014 , 279-288			
	gen. nov., sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed family within the order Rhizobiales. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, The Impact of the Inoculation of Phosphate-Solubilizing Bacteria on Phosphorus Availability and Bacterial Community Dynamics of a Semi-Arid Soil. Microorganisms, 2021, 9, Insights Into the Cultivable Bacterial Fraction of Sediments From the Red Sea Mangroves and Physiological, Chemotaxonomic, and Genomic Characterization of gen. nov., sp. nov., a Novel Member of the Family Frontiers in Microbiology, 2022, 13, 777986 Rhizosheath-root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment Environmental Microbiomes, 2022, 17, 14 Anaerobic digestion of olive mill effluents: Microbiological and processing aspects. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1993, 28, 2041-2059 gen. nov., sp. nov., a moderately halophilic bacterium isolated from bioturbated Red Sea mangrove sediment, and proposal of the novel family fam. nov. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, Aridity modulates belowground bacterial community dynamics in olive tree. Environmental Microbiology, 2021, 23, 6275-6291 Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams Nature Communications, 2022, 13, 2168 Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts Microbiology Spectrum, 2022, e0158021 Invertebrate Gut Associations 2015, 4.4.1-1-4.4.1-7	gen. nov., sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed family within the order Rhizobiales. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, The Impact of the Inoculation of Phosphate-Solubilizing Bacteria on Phosphorus Availability and Bacterial Community Dynamics of a Semi-Arid Soil. Microorganisms, 2021, 9, Insights Into the Cultivable Bacterial Fraction of Sediments From the Red Sea Mangroves and Physiological, Chemotaxonomic, and Genomic Characterization of gen. nov., sp. nov., a Novel Member of the Family Frontiers in Microbiology, 2022, 13, 777986 Rhizosheath-root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environmenta. Environmental Microbiomes, 2022, 17, 14 Anaerobic digestion of olive mill effluents: Microbiological and processing aspects. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1993, 28, 2041-2059 gen. nov., sp. nov., a moderately halophilic bacterium isolated from bioturbated Red Sea mangrove sediment, and proposal of the novel family fam. nov. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, Aridity modulates belowground bacterial community dynamics in olive tree. Environmental Microbiology, 2021, 23, 6275-6291 Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams. Nature Communications, 2022, 13, 2168 17-4 Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts Microbiology Spectrum, 2022, e0158021 Invertebrate Gut Associations 2015, 4.4.1-1-4.4.1-7	halocline. ISME Journal, 2021, 15, 2351-2365 gen. nov., sp. nov. isolated from Red Sea mangrove sediments belongs to the recently proposed family within the order Rhizobiales. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, The Impact of the Inoculation of Phosphate-Solubilizing Bacteria on Phosphorus Availability and Bacterial Community Dynamics of a Semi-Arid Soil. Microorganisms, 2021, 9, Insights Into the Cultivable Bacterial Fraction of Sediments From the Red Sea Mangroves and Physiological, Chemotaxonomic, and Genomic Characterization of gen. nov., sp. nov., a Novel Member of the Family Frontiers in Microbiology, 2022, 13, 777986 Rhizosheath-root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment Environmental Microbiomes, 2022, 17, 14 Anaerobic digestion of olive mill effluents: Microbiological and processing aspects. Journal of Environmental Science and Health Part A: Environmental Science and Engineering, 1993, 28, 2041-2059 gen. nov., sp. nov., a moderately halophilic bacterium isolated from bioturbated Red Sea mangrove sediment, and proposal of the novel family fam. nov. International Journal of Systematic and Evolutionary Microbiology, 2021, 23, 6275-6291 Genomic and metabolic adaptations of biofilms to ecological windows of opportunity in glacier-fed streams Nature Communications, 2022, 13, 2168 17-4 1 Destabilization of the Bacterial Interactome Identifies Nutrient Restriction-Induced Dysbiosis in Insect Guts Microbiology Spectrum, 2022, e0158021 Invertebrate Gut Associations 2015, 4.4.1-1-4.4.1-7