Alireza Ashori

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7634285/publications.pdf

Version: 2024-02-01

		34105	56724
151	8,479	52	83
papers	8,479 citations	h-index	g-index
156	156	156	8269
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The effect of nanocellulose on mechanical and physical properties of chitosan-based biocomposites. Journal of Elastomers and Plastics, 2022, 54, 22-41.	1.5	20
2	Modified cellulose nanofibers aerogels as a novel air filters; Synthesis and performance evaluation. International Journal of Biological Macromolecules, 2022, 203, 601-609.	7.5	22
3	Employing Cellulose Nanofiber-Based Hydrogels for Burn Dressing. Polymers, 2022, 14, 1207.	4.5	17
4	A Comparative Study on the Mechanical and Physical Properties of Plywood Panels Prepared by Chitosan as Bio-Adhesive. Journal of Polymers and the Environment, 2022, 30, 4263-4270.	5.0	5
5	Development of Cellulose Aerogel as a New Material for the Reduction of Harmful Substances in Cigarette Smoke. Journal of Polymers and the Environment, 2022, 30, 4418-4426.	5.0	4
6	Cross-linked chitosan into graphene oxide-iron(III) oxide hydroxide as nano-biosorbent for Pd(II) and Cd(II) removal. International Journal of Biological Macromolecules, 2021, 166, 229-237.	7.5	23
7	Modification of chitosan using amino acids for wound healing purposes: A review. Carbohydrate Polymers, 2021, 258, 117675.	10.2	72
8	Preparation and characterization of air nanofilters based on cellulose nanofibers. International Journal of Biological Macromolecules, 2021, 182, 1392-1398.	7.5	23
9	Surface modification of cellulose nanofiber aerogels using phthalimide. Polymer Composites, 2020, 41, 219-226.	4.6	17
10	Graphene oxide and chitosan co-modified ZnS as photocatalyst and adsorbent: preparation, characterisation, removal of acid orange 7, kinetic studies, and adsorption isotherms. International Journal of Environmental Analytical Chemistry, 2020, 100, 1362-1375.	3.3	5
11	Preparation of chitosan-based composites with urethane cross linkage and evaluation of their properties for using as wound healing dressing. Carbohydrate Polymers, 2020, 230, 115606.	10.2	53
12	A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydrate Polymers, 2020, 230, 115571.	10.2	52
13	Glass fiber-reinforced epoxy composite with surface-modified graphene oxide: enhancement of interlaminar fracture toughness and thermo-mechanical performance. Polymer Bulletin, 2019, 76, 259-270.	3.3	29
14	Preparation and characterization of polyhydroxybutyrate-co-valerate (PHBV) as green composites using nano reinforcements. International Journal of Biological Macromolecules, 2019, 136, 1119-1124.	7.5	34
15	Characterization and properties of polyethersulfone/ modified cellulose nanocrystals nanocomposite membranes. Polymer Testing, 2019, 76, 333-339.	4.8	41
16	A Review on Date Palm Tree: Properties, Characterization and Its Potential Applications. Journal of Renewable Materials, 2019, 7, 1055-1075.	2.2	40
17	Effect of cellulose nanocrystals on performance of polyethersulfone nanocomposite membranes using electrospinning technique. Polymer Composites, 2019, 40, E835.	4.6	9
18	Modification of TiO ₂ with graphene oxide and reduced graphene oxide; enhancing photocatalytic activity of TiO ₂ for removal of remazol Black B. Polymer Composites, 2019, 40, 210-216.	4.6	30

#	Article	IF	Citations
19	Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing. International Journal of Biological Macromolecules, 2018, 112, 442-447.	7.5	98
20	Development and material properties of reinforced plywood using carbon fiber and waste rubber powder. Polymer Composites, 2018, 39, 675-680.	4.6	12
21	Chemical modification of soybean flourâ€based adhesives using acetylated cellulose nanocrystals. Polymer Composites, 2018, 39, 3618-3625.	4.6	18
22	Potential of magnetite reduced graphene oxide/chitosan nanocomposite as biosorbent for the removal of dyes from aqueous solutions. Polymer Composites, 2018, 39, E457.	4.6	17
23	Reinforcing effects of functionalized graphene oxide on glass fiber/epoxy composites. Polymer Composites, 2018, 39, E2324.	4.6	24
24	Thermoplastic starch foamed composites reinforced with cellulose nanofibers: Thermal and mechanical properties. Carbohydrate Polymers, 2018, 197, 305-311.	10.2	63
25	Evaluation of the antibacterial activity of cellulose nanofibers/polylactic acid composites coated with ethanolic extract of propolis. Polymer Composites, 2017, 38, 13-19.	4.6	36
26	Preparation of magnetic graphene oxide-ferrite nanocomposites for oxidative decomposition of Remazol Black B. International Journal of Biological Macromolecules, 2017, 97, 671-678.	7.5	28
27	Mechanical and acoustical properties of particleboards made with date palm branches and vermiculite. Polymer Testing, 2017, 60, 153-159.	4.8	26
28	Preparation and characterization of reinforced papers using nano bacterial cellulose. International Journal of Biological Macromolecules, 2017, 101, 334-340.	7.5	58
29	Hybrid thermoplastic composites using nonwood plant fibers. , 2017, , 39-56.		7
30	Preparation and characterization of sodium carboxymethyl cellulose/silk fibroin/graphene oxide nanocomposite films. Polymer Testing, 2016, 52, 218-224.	4.8	62
31	Mechanical and thermo-mechanical properties of short carbon fiber reinforced polypropylene composites using exfoliated graphene nanoplatelets coating. Journal of Industrial and Engineering Chemistry, 2016, 38, 37-42.	5.8	56
32	Acoustical properties of plywood/waste tire rubber composite panels. Measurement: Journal of the International Measurement Confederation, 2016, 94, 382-387.	5.0	24
33	Effect of ozone pretreatment on the physical and mechanical properties of particleboard panels made from bagasse. Measurement: Journal of the International Measurement Confederation, 2016, 94, 451-455.	5.0	10
34	Bacterial cellulose composites loaded with SiO 2 nanoparticles: Dynamic-mechanical and thermal properties. International Journal of Biological Macromolecules, 2016, 93, 672-677.	7.5	23
35	Viscoelastic response and interlaminar delamination resistance of epoxy/glass fiber/functionalized graphene oxide multi-scale composites. Polymer Testing, 2016, 54, 186-195.	4.8	42
36	Surface modification of carbon fiber for improving the interfacial adhesion between carbon fiber and polymer matrix. Polymers for Advanced Technologies, 2016, 27, 805-811.	3.2	37

#	Article	IF	CITATIONS
37	Evaluation of multiwalled carbon nanotubes as reinforcement for natural fiberâ€based composites. Polymer Composites, 2016, 37, 3269-3274.	4.6	12
38	Optimization of mechanical properties of polypropylene/talc/graphene composites using response surface methodology. Polymer Testing, 2016, 53, 283-292.	4.8	90
39	Hybrid composite using recycled polycarbonate/waste silk fibers and wood flour. Polymer Composites, 2016, 37, 1667-1673.	4.6	19
40	Preparation and characterization of acetylated starch nanoparticles as drug carrier: Ciprofloxacin as a model. International Journal of Biological Macromolecules, 2016, 87, 48-54.	7. 5	109
41	Effects of extractives removal on the performance of clear varnish coatings on boards. Journal of Composite Materials, 2016, 50, 3019-3024.	2.4	10
42	Utilization of waste tire rubber in hybrid plywood composite panel. Polymers for Advanced Technologies, 2015, 26, 1034-1040.	3.2	8
43	Elastic Properties of Carbon Fibre-Reinforced Epoxy Composites. Polymers and Polymer Composites, 2015, 23, 475-482.	1.9	16
44	Suitability of sorghum stalk fibers for production of particleboard. Carbohydrate Polymers, 2015, 120, 15-21.	10.2	56
45	Fiber-cement composite using rice stalk fiber and rice husk ash: Mechanical and physical properties. Journal of Composite Materials, 2015, 49, 3317-3322.	2.4	18
46	Effects of nanoclay and coupling agent on fungal degradation and water absorption of sanding dust/high density polyethylene composites. Journal of Composite Materials, 2015, 49, 1107-1114.	2.4	8
47	Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohydrate Polymers, 2015, 132, 1-8.	10.2	151
48	Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution. International Journal of Biological Macromolecules, 2015, 80, 475-480.	7. 5	75
49	Preparation and characterization of functionalized graphene oxide/carbon fiber/epoxy nanocomposites. Polymer Testing, 2015, 48, 82-88.	4.8	79
50	Quantitative palynostratigraphy and palaeoecology of Tethyan Paleocene–Eocene red beds in north of Zagros sedimentary basin, Iran. Arabian Journal of Geosciences, 2015, 8, 827-838.	1.3	9
51	Production of bacterial cellulose using different carbon sources and culture media. Carbohydrate Polymers, 2015, 117, 518-523.	10.2	267
52	Alternative Solutions for Reinforcement of Thermoplastic Composites., 2015,, 65-92.		7
53	Lignocellulosic Fibers and Nanocellulose as Reinforcing Filler in Thermoplastic Composites. Eurasian Journal of Forest Science, 2015, 2, 1-6.	0.6	7
54	Properties of wood plastic composite panels made from waste sanding dusts and nanoclay. Journal of Composite Materials, 2014, 48, 1661-1669.	2.4	33

#	Article	IF	CITATIONS
55	Effects of graphene on the behavior of chitosan and starch nanocomposite films. Polymer Engineering and Science, 2014, 54, 2258-2263.	3.1	35
56	Wood Plastic Composite Panels: Influence of the Species, Formulation Variables and Blending Process on the Density and Withdrawal Strength of Fasteners. Journal of Polymers and the Environment, 2014, 22, 260-266.	5 . 0	17
57	Modification of Physico-Mechanical Properties of Chitosan-Tapioca Starch Blend Films Using Nano Graphene. Polymer-Plastics Technology and Engineering, 2014, 53, 312-318.	1.9	66
58	Preparation and characterization of modified cellulose nanofibers reinforced polylactic acid nanocomposite. Polymer Testing, 2014, 35, 73-79.	4.8	198
59	Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohydrate Polymers, 2014, 102, 369-375.	10.2	138
60	Mechanical performance of epoxy/carbon fiber laminated composites. Journal of Reinforced Plastics and Composites, 2014, 33, 733-740.	3.1	86
61	Effects of hemicellulose pre-extraction and cellulose nanofiber on the properties of rice straw pulp. International Journal of Biological Macromolecules, 2014, 68, 198-204.	7.5	19
62	Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: A promising nano-adsorbent. International Journal of Biological Macromolecules, 2014, 68, 218-224.	7.5	142
63	Characterization and biodegradability of polypropylene composites using agricultural residues and waste fish. Composites Part B: Engineering, 2014, 56, 279-283.	12.0	49
64	Thermoplastic Hybrid Composites using Bagasse, Corn Stalk and E-glass Fibers: Fabrication and Characterization. Polymer-Plastics Technology and Engineering, 2014, 53, 1-8.	1.9	36
65	Environmental Friendly Pulping of Kenaf Using Monoethanolamine: Influence of the Process Variables on the Strength Properties. Advances in Polymer Technology, 2014, 33, .	1.7	2
66	Effects of nano-graphene on the physico-mechanical properties of bagasse/polypropylene composites. Polymer Bulletin, 2014, 71, 337-349.	3.3	92
67	Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and Building Materials, 2014, 50, 432-436.	7.2	137
68	Mechanical properties of carbon fiber/epoxy composites: Effects of number of plies, fiber contents, and angle-ply layers. Polymer Engineering and Science, 2014, 54, 2676-2682.	3.1	52
69	Application of soybean stalk for the removal of hazardous dyes from aqueous solutions. Polymer Engineering and Science, 2014, 54, 239-245.	3.1	11
70	Improving wet and dry strength properties of recycled old corrugated carton (OCC) pulp using various polymers. Carbohydrate Polymers, 2013, 94, 577-583.	10.2	51
71	Effects of dissolution of some lignocellulosic materials with ionic liquids as green solvents on mechanical and physical properties of composite films. Carbohydrate Polymers, 2013, 95, 57-63.	10.2	55
72	Preparation of cellulose/polyvinyl alcohol biocomposite films using 1-n-butyl-3-methylimidazolium chloride. International Journal of Biological Macromolecules, 2013, 62, 379-386.	7.5	88

#	Article	IF	Citations
73	Effects of chemical preservative treatments on durability of wood flour/HDPE composites. Composites Part B: Engineering, 2013, 47, 308-313.	12.0	49
74	Effect of chitosan and cationic starch on the surface chemistry properties of bagasse paper. International Journal of Biological Macromolecules, 2013, 58, 343-348.	7.5	28
75	Wood plastic composite using graphene nanoplatelets. International Journal of Biological Macromolecules, 2013, 58, 1-6.	7.5	67
76	Pre-extraction of hemicelluloses from bagasse fibers: Effects of dry-strength additives on paper properties. Industrial Crops and Products, 2013, 43, 365-371.	5.2	69
77	Reuse of waste sludge from papermaking process in cement composites. Polymer Engineering and Science, 2013, 53, 183-188.	3.1	11
78	Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes. Carbohydrate Polymers, 2013, 92, 865-871.	10.2	59
79	Effects of extractives on some properties of bagasse/high density polypropylene composite. Carbohydrate Polymers, 2013, 94, 416-419.	10.2	22
80	Preparation and characterization of some graphene based nanocomposite materials. Carbohydrate Polymers, 2013, 95, 348-359.	10.2	42
81	Study on the effects of white rice husk ash and fibrous materials additions on some properties of fiber–cement composites. Journal of Environmental Management, 2013, 117, 263-267.	7.8	31
82	Utilization of sugarcane molasses as a dry-strength additive for old corrugated container recycled paper. Composites Part B: Engineering, 2013, 45, 1595-1600.	12.0	20
83	Effects of hot water pre-extraction on surface properties of bagasse soda pulp. Materials Science and Engineering C, 2013, 33, 613-617.	7.3	15
84	Effects of nanoparticles on the mechanical properties of rice straw/polypropylene composites. Journal of Composite Materials, 2013, 47, 149-154.	2.4	47
85	A comparative study on some properties of wood plastic composites using canola stalk, Paulownia, and nanoclay. Journal of Applied Polymer Science, 2013, 129, 1491-1498.	2.6	47
86	Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets. Acta Chimica Slovenica, 2013, 60, 813-25.	0.6	28
87	Removal of Acid Orange 7 and Remazol Black 5 reactive dyes from aqueous solutions using a novel biosorbent. Materials Science and Engineering C, 2012, 32, 1394-1400.	7.3	134
88	Bacterial cellulose/silica nanocomposites: Preparation and characterization. Carbohydrate Polymers, 2012, 90, 413-418.	10.2	122
89	Potential of Canola Stalk as Biosorbent for the Removal of Remazol Black B Reactive Dye from Aqueous Solutions. Journal of Wood Chemistry and Technology, 2012, 32, 328-341.	1.7	13
90	Strength-enhancing effect of cationic starch on mixed recycled and virgin pulps. Carbohydrate Polymers, 2012, 87, 1269-1274.	10.2	58

#	Article	IF	Citations
91	Investigation on the surface properties of chemically modified natural fibers using inverse gas chromatography. Carbohydrate Polymers, 2012, 87, 2367-2375.	10.2	61
92	Influence of mild alkaline treatment on the cellulosic surfaces active sites. Carbohydrate Polymers, 2012, 88, 1293-1298.	10.2	34
93	A comparative study on the effects of Coriolus versicolor on properties of HDPE/wood flour/paper sludge composites. Composites Part B: Engineering, 2012, 43, 2409-2414.	12.0	32
94	Evaluation of using waste timber railway sleepers in wood–cement composite materials. Construction and Building Materials, 2012, 27, 126-129.	7.2	39
95	Impacts of wood preservative treatments on some physico-mechanical properties of wood flour/high density polyethylene composites. Construction and Building Materials, 2012, 35, 246-250.	7.2	17
96	Large-scale biodiesel production using microalgae biomass of Nannochloropsis. Biomass and Bioenergy, 2012, 39, 449-453.	5.7	159
97	Effect of extractives on the performance properties of wood flourâ€polypropylene composites. Journal of Applied Polymer Science, 2012, 123, 1563-1567.	2.6	30
98	Current and potential capabilities of biomass for green energy in Iran. Renewable and Sustainable Energy Reviews, 2011, 15, 4934-4938.	16.4	58
99	Nano-SiO2 filled rice husk/polypropylene composites: Physico-mechanical properties. Industrial Crops and Products, 2011, 33, 183-187.	5.2	99
100	Wood–wool cement board using mixture of eucalypt and poplar. Industrial Crops and Products, 2011, 34, 1146-1149.	5.2	44
101	Performance characterizations of particleboards made with wheat straw and waste veneer splinters. Composites Part B: Engineering, 2011, 42, 2085-2089.	12.0	36
102	Cement-bonded composite boards made from poplar strands. Construction and Building Materials, 2011, 26, 131-131.	7.2	23
103	Effects of Waste Paper Sludge on the Physico-Mechanical Properties of High Density Polyethylene/Wood Flour Composites. Journal of Polymers and the Environment, 2011, 19, 120-124.	5.0	64
104	Lemon Balm (Melissa officinalis) Stalk: Chemical Composition and Fiber Morphology. Journal of Polymers and the Environment, 2011, 19, 297-300.	5.0	25
105	Dimensional Stability and Water Uptake Properties of Cement-Bonded Wood Composites. Journal of Polymers and the Environment, 2011, 19, 518-521.	5.0	17
106	Preparation and characterization of polypropylene/wood flour/nanoclay composites. European Journal of Wood and Wood Products, 2011, 69, 663-666.	2.9	62
107	Water resistance and thermal stability of hybrid lignocellulosic filler–PVC composites. Polymer Bulletin, 2011, 66, 797-802.	3.3	44
108	Effects of nanoclay and coupling agent on the physicoâ€mechanical, morphological, and thermal properties of wood flour/polypropylene composites. Polymer Engineering and Science, 2011, 51, 272-277.	3.1	79

#	Article	IF	Citations
109	Mechanical properties of reinforced polyvinyl chloride composites: Effect of filler form and content. Journal of Applied Polymer Science, 2011, 120, 1788-1793.	2.6	26
110	Bacterial synthesized cellulose nanofibers; Effects of growth times and culture mediums on the structural characteristics. Carbohydrate Polymers, 2011, 86, 1187-1191.	10.2	93
111	Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol–formaldehyde adhesive. Composites Part B: Engineering, 2011, 42, 176-180.	12.0	76
112	Evaluation of surface roughness and mechanical properties of particleboard panels made from bagasse. Composites Part B: Engineering, 2011, 42, 1330-1335.	12.0	65
113	Biomass and lipid productivities of marine microalgae isolated from the Persian Gulf and the Qeshm Island. Biomass and Bioenergy, 2011, 35, 1935-1939.	5.7	72
114	Fiber reinforced cement boards made from recycled newsprint paper. Materials Science & Science & Fiber Properties, Microstructure and Processing, 2011, 528, 7801-7804.	5.6	24
115	Mechanical and thermo-chemical properties of wood-flour/polypropylene blends. Polymer Bulletin, 2010, 65, 691-700.	3.3	52
116	Hybrid Composites from Waste Materials. Journal of Polymers and the Environment, 2010, 18, 65-70.	5.0	50
117	Physical properties of polyethylene–wood fiber–clay nanocomposites. Journal of Applied Polymer Science, 2010, 118, 3255-3259.	2.6	38
118	Hybrid composites made from recycled materials: Moisture absorption and thickness swelling behavior. Bioresource Technology, 2010, 101, 4717-4720.	9.6	156
119	Bio-based composites from waste agricultural residues. Waste Management, 2010, 30, 680-684.	7.4	155
120	Performance properties of microcrystalline cellulose as a reinforcing agent in wood plastic composites. Composites Part B: Engineering, 2010, 41, 578-581.	12.0	95
121	Reinforced polypropylene composites: Effects of chemical compositions and particle size. Bioresource Technology, 2010, 101, 2515-2519.	9.6	103
122	Wood plastic composites from agro-waste materials: Analysis of mechanical properties. Bioresource Technology, 2010, 101, 2525-2528.	9.6	126
123	Particleboard made from waste paper treated with maleic anhydride. Waste Management and Research, 2010, 28, 51-55.	3.9	35
124	Study on Mechanical Properties of Wood Fiber/Polypropylene Composites. Advanced Materials Research, 2010, 123-125, 1195-1198.	0.3	8
125	Effects of Particle Size and Coupling Agent Concentration on Mechanical Properties of Particulate-filled Polymer Composites. Journal of Thermoplastic Composite Materials, 2010, 23, 169-174.	4.2	85
126	Effects of Nanoclay as a Reinforcement Filler on the Physical and Mechanical Properties of Wood-based Composite. Journal of Composite Materials, 2009, 43, 1869-1875.	2.4	64

#	Article	IF	CITATIONS
127	Evaluation of Calotropis gigantea as a Promising Raw Material for Fiber-reinforced Composite. Journal of Composite Materials, 2009, 43, 1297-1304.	2.4	82
128	Properties of Medium Density Fiberboard Based on Bagasse Fibers. Journal of Composite Materials, 2009, 43, 1927-1934.	2.4	38
129	Polypropylene celluloseâ€based composites: The effect of bagasse reinforcement and polybutadiene isocyanate treatment on the mechanical properties. Journal of Applied Polymer Science, 2009, 111, 1684-1689.	2.6	37
130	Mechanical behavior of agroâ€residueâ€reinforced polypropylene composites. Journal of Applied Polymer Science, 2009, 111, 2616-2620.	2.6	69
131	Influence of nanoclay and coupling agent on the physical and mechanical properties of polypropylene/bagasse nanocomposite. Journal of Applied Polymer Science, 2009, 112, 1386-1390.	2.6	41
132	Studies on Iranian cultivated paulownia – aÂpotential source of fibrous raw material for paper industry. European Journal of Wood and Wood Products, 2009, 67, 323-327.	2.9	29
133	Characteristics of wood–fiber plastic composites made of recycled materials. Waste Management, 2009, 29, 1291-1295.	7.4	178
134	Preparation and Properties of Wood Plastic Composites Made of Recycled High-density Polyethylene. Journal of Composite Materials, 2009, 43, 877-883.	2.4	66
135	Giant Milkweed (Calotropis persica) Fibers â€" A Potential Reinforcement Agent for Thermoplastics Composites. Journal of Reinforced Plastics and Composites, 2009, 28, 2143-2149.	3.1	30
136	Fundamental studies on wood–plastic composites: Effects of fiber concentration and mixing temperature on the mechanical properties of poplar/PP composite. Polymer Composites, 2008, 29, 569-573.	4.6	57
137	A comparative study on mechanical properties and water absorption behavior of fiberâ€reinforced polypropylene composites prepared by OCC fiber and aspen fiber. Polymer Composites, 2008, 29, 574-578.	4.6	42
138	Wood–plastic composites as promising green-composites for automotive industries!. Bioresource Technology, 2008, 99, 4661-4667.	9.6	795
139	Surface topography of kenaf (Hibiscus cannabinus) sized papers. Bioresource Technology, 2008, 99, 404-410.	9.6	29
140	Effect of press cycle time and resin content on physical and mechanical properties of particleboard panels made from the underutilized low-quality raw materials. Industrial Crops and Products, 2008, 28, 225-230.	5. 2	80
141	Effect of a Novel Coupling Agent, Polybutadiene Isocyanate, on Mechanical Properties of Wood-Fiber Polypropylene Composites. Journal of Reinforced Plastics and Composites, 2008, 27, 1679-1687.	3.1	47
142	Municipal Solid Waste as a Source of Lignocellulosic Fiber and Plastic for Composite Industries. Polymer-Plastics Technology and Engineering, 2008, 47, 741-744.	1.9	46
143	Highly Fiber-Loaded Composites: Physical and Mechanical Properties. Polymers and Polymer Composites, 2008, 16, 343-347.	1.9	12
144	Printability of Sized Kenaf (Hibiscus cannabinus) Papers. Polymer-Plastics Technology and Engineering, 2007, 46, 683-687.	1.9	7

#	Article	IF	CITATIONS
145	Pulp and paper from kenaf bast fibers. Fibers and Polymers, 2006, 7, 26-29.	2.1	34
146	Nonwood Fibersâ€"A Potential Source of Raw Material in Papermaking. Polymer-Plastics Technology and Engineering, 2006, 45, 1133-1136.	1.9	119
147	Effect of Accelerated Aging on Properties of Kenaf(Hibiscus cannabinus) Paper Sized with Various Polymers. Polymer-Plastics Technology and Engineering, 2006, 45, 213-216.	1.9	4
148	Effect of Totally Chlorine Free and Elemental Chlorine Free Sequences on Whole Stem Kenaf (Hibiscus) Tj ETQq0 (0	Overlock 10
149	Chemical and Morphological Characteristics of Malaysian Cultivated Kenaf (<i>Hibiscus) Tj ETQq1 1 0.784314 rgl</i>	3T ₁ /Overlo	ck 10 Tf 50
150	Enhancing Dry-Strength Properties of Kenaf (<i>Hibiscus cannabinus</i>) Paper Through Chitosan. Polymer-Plastics Technology and Engineering, 2006, 45, 125-129.	1.9	21
151	Effect of chitosan addition on the surface properties of kenaf (Hibiscus cannabinus) paper. Fibers and Polymers, 2005, 6, 174-179.	2.1	25