Dolly Mehta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7634161/publications.pdf

Version: 2024-02-01

68 papers 4,467 citations

218381 26 h-index 243296 44 g-index

68 all docs

68 docs citations

times ranked

68

5941 citing authors

#	Article	IF	CITATIONS
1	Endothelial ERG determines the Immune Niche and Vascular Homeostasis. FASEB Journal, 2021, 35, .	0.2	О
2	Piezo1 promotes ER Ca 2+ transport to regulate the cellular responses of endothelial cells to shear stress. FASEB Journal, 2021, 35, .	0.2	0
3	Nrf2 Regulates Anti-Inflammatory A20 Deubiquitinase Induction by LPS in Macrophages in Contextual Manner. Antioxidants, 2021, 10, 847.	2.2	4
4	Hyperoxia-induced S1P1 signaling reduced angiogenesis by suppression of TIE-2 leading to experimental bronchopulmonary dysplasia. Cell Biochemistry and Biophysics, 2021, 79, 561-573.	0.9	7
5	Programming to S1PR1 ⁺ Endothelial Cells Promotes Restoration of Vascular Integrity. Circulation Research, 2021, 129, 221-236.	2.0	23
6	Evidence for reprogramming of monocytes into reparative alveolar macrophages in vivo by targeting PDE4b. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L686-L702.	1.3	5
7	Tyrosine phosphorylation of S1PR1 leads to chaperone BiP-mediated import to the endoplasmic reticulum. Journal of Cell Biology, 2021, 220, .	2.3	3
8	TERTing the hyperoxic lung. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H1103-H1105.	1.5	1
9	S1P Generation by Sphingosine Kinase-2 in Recruited Macrophages Resolves Lung Inflammation by Blocking STING Signaling in Alveolar Macrophages. Journal of Cellular Signaling, 2021, 2, 47-51.	0.5	0
10	Macrophage TLR4 and PAR2 Signaling: Role in Regulating Vascular Inflammatory Injury and Repair. Frontiers in Immunology, 2020, $11,2091$.	2.2	39
11	S1PR1 and VEGFR2 – a synergy that promotes tumor angiogenesis?. Molecular and Cellular Oncology, 2020, 7, 1746131.	0.3	3
12	SPHK2-Generated S1P in CD11b+ Macrophages Blocks STING to Suppress the Inflammatory Function of Alveolar Macrophages. Cell Reports, 2020, 30, 4096-4109.e5.	2.9	40
13	Post-translational modifications of S1PR1 and endothelial barrier regulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158760.	1.2	11
14	IL- $1\hat{l}^2$ suppression of VE-cadherin transcription underlies sepsis-induced inflammatory lung injury. Journal of Clinical Investigation, 2020, 130, 3684-3698.	3.9	116
15	PAR2-Mediated cAMP Generation Suppresses TRPV4-Dependent Ca2+ Signaling in Alveolar Macrophages to Resolve TLR4-Induced Inflammation. Cell Reports, 2019, 27, 793-805.e4.	2.9	52
16	Sphingosine-1-Phosphate Receptor 1 Activity Promotes Tumor Growth by Amplifying VEGF-VEGFR2 Angiogenic Signaling. Cell Reports, 2019, 29, 3472-3487.e4.	2.9	41
17	Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. American Journal of Physiology - Cell Physiology, 2019, 316, C92-C103.	2.1	97
18	Role of Piezo1 in cAMPâ€Dependent Calcium Release From ER Stores in Endothelial Cells. FASEB Journal, 2019, 33, 809.9.	0.2	3

#	Article	IF	Citations
19	PTEN suppresses epigenetic modulation of ERG transcription factor to maintain endothelial lineage and vascular integrity. FASEB Journal, 2018, 32, 746.10.	0.2	O
20	Sphingosine Kinase 2 Expression in CD11b + Macrophages Negatively Regulates cGASSTING Activity and Resolves Lung Injury. FASEB Journal, 2018, 32, 832.18.	0.2	0
21	FAK maintenance of endothelial mechanotransduction controls epigenetic repression of KLF2 and S1PR1 transcription. FASEB Journal, 2018, 32, 837.7.	0.2	0
22	Protease activated receptor 2 deficiency in alveolar macrophages impairs cAMP generation leading to NFATâ€dependent proâ€inflammatory signalling and lung injury. FASEB Journal, 2018, 32, 746.6.	0.2	0
23	Dynamin internalizes tyrosine phosphorylated sphingosine 1 phosphate receptor 1 and impair downstream signaling. FASEB Journal, 2018, 32, 557.13.	0.2	0
24	Myosin Light Chain Kinaseâ€210 Induces ERâ€PM Junctions and STIM1 Puncta Formation to Augment Storeâ€Operated Ca 2+ Entry. FASEB Journal, 2018, 32, 865.1.	0.2	0
25	Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability. Circulation Research, 2017, 120, 179-206.	2.0	345
26	Response by Komarova et al to Letter Regarding Article, "Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability― Circulation Research, 2017, 120, e28.	2.0	1
27	STIM1 Phosphorylation at Y361 Recruits Orai1 to STIM1 Puncta and Induces Ca2+ Entry. Scientific Reports, 2017, 7, 42758.	1.6	48
28	Embryonic Stem Cell Differentiation to Functional Arterial Endothelial Cells through Sequential Activation of ETV2 and NOTCH1 Signaling by HIF1α. Stem Cell Reports, 2017, 9, 796-806.	2.3	35
29	oxLDL induces endothelial cell proliferation via Rho/ROCK/Akt/p27kip1 signaling: opposite effects of oxLDL and cholesterol loading. American Journal of Physiology - Cell Physiology, 2017, 313, C340-C351.	2.1	22
30	Synaptopodin Limits TRPC6 Podocyte Surface Expression and Attenuates Proteinuria. Journal of the American Society of Nephrology: JASN, 2016, 27, 3308-3319.	3.0	47
31	MicroRNA-150 Suppression of Angiopoetin-2 Generation and Signaling Is Crucial for Resolving Vascular Injury. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 380-388.	1.1	43
32	ROS-activated calcium signaling mechanisms regulating endothelial barrier function. Cell Calcium, 2016, 60, 163-171.	1.1	73
33	Transient receptor potential channel 1 maintains adherens junction plasticity by suppressing sphingosine kinase 1 expression to induce endothelial hyperpermeability. FASEB Journal, 2016, 30, $102-110$.	0.2	17
34	All-Trans Retinoic Acid Induces TGF- \hat{l}^2 2 in Intestinal Epithelial Cells via RhoA- and p38 \hat{l}^\pm MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS ONE, 2015, 10, e0134003.	1.1	20
35	p120-Catenin Expressed in Alveolar Type II Cells Is Essential for the Regulation of Lung Innate Immune Response. American Journal of Pathology, 2015, 185, 1251-1263.	1.9	18
36	Visualization of Fra-1/AP-1 activation during LPS-induced inflammatory lung injury using fluorescence optical imaging. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L414-L424.	1.3	7

#	Article	IF	CITATIONS
37	Upregulated expression of STIM2, TRPC6, and Orai2 contributes to the transition of pulmonary arterial smooth muscle cells from a contractile to proliferative phenotype. American Journal of Physiology - Cell Physiology, 2015, 308, C581-C593.	2.1	91
38	Role of Tyr143 phosphorylation of S1PR1 in downregulating endothelial cell surface S1PR1 expression and responsiveness. Journal of Cell Science, 2015, 128, 878-87.	1.2	22
39	ROCK2 primes the endothelium for vascular hyperpermeability responses by raising baseline junctional tension. Vascular Pharmacology, 2015, 70, 45-54.	1.0	33
40	ADAM 17 Regulates S1PR1 Surface Expression by its Ectodomain Shedding thereby Disrupting Endothelial Barrier Function. FASEB Journal, 2015, 29, 627.7.	0.2	0
41	AP2M1 induced internalization of TRPC6 regulates calcium influx. FASEB Journal, 2015, 29, 627.10.	0.2	0
42	Pyk2â€Induced Tyrosine Phosphorylation of STIM1 at Y361 Residue Regulates Puncta Formation, Storeâ€Operated Calcium Entry and Lung Vascular Permeability. FASEB Journal, 2015, 29, 661.9.	0.2	0
43	Mechanisms Regulating Endothelial Permeability. Pulmonary Circulation, 2014, 4, 535-551.	0.8	218
44	The role of mechanical tension on lipid raft dependent PDGF-induced TRPC6 activation. Biomaterials, 2014, 35, 2868-2877.	5.7	24
45	Novel regulators of endothelial barrier function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 307, L924-L935.	1.3	109
46	Conditional deletion of FAK in mice endothelium disrupts lung vascular barrier function due to destabilization of RhoA and Rac1 activities. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L291-L300.	1.3	47
47	Long Isoform of Myosin Light Chain Kinase Interacts with Calcium Releaseâ€Activated Calcium Channel Constituents to Induce an Amplified and Protracted Increase in Intracellular Calcium. FASEB Journal, 2013, 27, 724.8.	0.2	0
48	TLR4 activation of TRPC6-dependent calcium signaling mediates endotoxin-induced lung vascular permeability and inflammation. Journal of Experimental Medicine, 2012, 209, 1953-1968.	4.2	191
49	Cyclic AMP response element-binding protein prevents endothelial permeability increase through transcriptional controlling p190RhoGAP expression. Blood, 2012, 119, 308-319.	0.6	36
50	Endothelial Focal adhesion kinase maintains lung fluid balance and prevents cytokine storm. FASEB Journal, 2012, 26, 1063.8.	0.2	0
51	Sphingosine Kinaseâ€1 regulates VEGFâ€A induced angiogenesis by mediating the interaction between VEGFR2 and S1P1. FASEB Journal, 2012, 26, .	0.2	0
52	Cation channel TRPC6 activation of TLR4 in endothelial cells mediates sepsisâ€induced acute lung injury. FASEB Journal, 2012, 26, 1130.5.	0.2	0
53	Endothelial FAK suppresses NADPH oxidase activity and ROS generation to prevent ALI. FASEB Journal, 2011, 25, 1100.4.	0.2	0
54	A novel role of macrophages in turningâ€off endotoxinâ€induced neutrophiliclung inflammation and thereby preventing acute lung injury associated withGram negative bacteria. FASEB Journal, 2011, 25, 1017.3.	0.2	0

#	Article	IF	CITATIONS
55	A New Role for PTEN in Regulating Transient Receptor Potential Canonical Channel 6-mediated Ca2+ Entry, Endothelial Permeability, and Angiogenesis*. Journal of Biological Chemistry, 2010, 285, 33082-33091.	1.6	72
56	Cyclic AMP response element binding protein, CREB, induces endothelial cell proliferation and angiogenesis in response to thrombin. FASEB Journal, 2010, 24, 956.7.	0.2	0
57	Endothelial Focal Adhesion Kinase Depletion Augments Lung Vascular Permeability by Impairing Sphingosineâ€1â€Phosphate Receptorâ€1 Function. FASEB Journal, 2009, 23, 581.12.	0.2	0
58	TRPC1â€Mediated Ca2+ Entry Increases Lung Microvascular Permeability. FASEB Journal, 2009, 23, 964.9.	0.2	0
59	<i>Regulation of Endothelial Junctional Permeability</i> . Annals of the New York Academy of Sciences, 2008, 1123, 134-145.	1.8	501
60	Activation of Sphingosine Kinase-1 Reverses the Increase in Lung Vascular Permeability Through Sphingosine-1-Phosphate Receptor Signaling in Endothelial Cells. Circulation Research, 2008, 103, 1164-1172.	2.0	174
61	The Role of Focal Adhesion Kinase in Sphingosineâ€1â€Phosphate Induced Endothelial Barrier Enhancement. FASEB Journal, 2008, 22, 1178.1.	0.2	1
62	A novel role of phosphatase and tensin homolog in regulating transient receptor potential channel 6â€mediated Ca2+â€entry and endothelial permeability. FASEB Journal, 2008, 22, 1178.4.	0.2	0
63	Signaling Mechanisms Regulating Endothelial Permeability. Physiological Reviews, 2006, 86, 279-367.	13.1	1,496
64	Regulator of G Protein Signaling 2 (RGS2) Inhibits Intracellular Ca2+ Mobilization and RhoA Activation: Role in Regulation of Endothelial Permeability. FASEB Journal, 2006, 20, A256.	0.2	0
65	Sphingosine 1-Phosphate-induced Mobilization of Intracellular Ca2+ Mediates Rac Activation and Adherens Junction Assembly in Endothelial Cells. Journal of Biological Chemistry, 2005, 280, 17320-17328.	1.6	137
66	Requirement for Ca ²⁺ signaling in the mechanism of thrombin-induced increase in endothelial permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L239-L247.	1.3	61
67	Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiological Genomics, 2000, 4, 137-145.	1.0	133
68	Pulmonary Endothelial Cell Calcium Signaling and Regulation of Lung Vascular Barrier Function. , 0, , 73-88.		0