Kentaroh Watanabe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7633686/publications.pdf

Version: 2024-02-01

430442 476904 145 1,220 18 29 citations g-index h-index papers 145 145 145 1190 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Efficient Perovskite Solar Modules with Minimized Nonradiative Recombination and Local Carrier Transport Losses. Joule, 2020, 4, 1263-1277.	11.7	93
2	Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. International Journal of Hydrogen Energy, 2013, 38, 14424-14432.	3.8	89
3	100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells. Progress in Photovoltaics: Research and Applications, 2014, 22, 784-795.	4.4	77
4	Absorption threshold extended to 1.15 eV using InGaAs/GaAsP quantum wells for overâ€50%â€efficient latticeâ€matched quadâ€junction solar cells. Progress in Photovoltaics: Research and Applications, 2016, 24, 533-542.	4.4	56
5	A quantum-well superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration. Journal Physics D: Applied Physics, 2013, 46, 024001.	1.3	39
6	Suppressed lattice relaxation during InGaAs/GaAsP MQW growth with InGaAs and GaAs ultra-thin interlayers. Journal of Crystal Growth, 2012, 352, 239-244.	0.7	37
7	Absorption enhancement through Fabry-Pérot resonant modes in a 430 nm thick InGaAs/GaAsP multiple quantum wells solar cell. Applied Physics Letters, 2015, 106, .	1.5	33
8	Evaluation of Carrier Collection Efficiency in Multiple Quantum Well Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 237-243.	1.5	31
9	Effect of Quantum Well on the Efficiency of Carrier Collection in InGaAs/GaAsP Multiple Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10ND04.	0.8	27
10	InGaAs/GaAsP strain balanced multi-quantum wires grown on misoriented GaAs substrates for high efficiency solar cells. Applied Physics Letters, 2014, 105, 083124.	1.5	26
11	Compensation doping in InGaAs / GaAsP multiple quantum well solar cells for efficient carrier transport and improved cell performance. Journal of Applied Physics, 2013, 114, .	1.1	25
12	Enhanced Light Trapping in Multiple Quantum Wells by Thin-Film Structure and Backside Grooves With Dielectric Interface. IEEE Journal of Photovoltaics, 2015, 5, 697-703.	1.5	24
13	High-Aspect Ratio Structures for Efficient Light Absorption and Carrier Transport in InGaAs/GaAsP Multiple Quantum-Well Solar Cells. IEEE Journal of Photovoltaics, 2013, 3, 859-867.	1.5	22
14	Quantum wireâ€onâ€well (WoW) cell with long carrier lifetime for efficient carrier transport. Progress in Photovoltaics: Research and Applications, 2016, 24, 1606-1614.	4.4	22
15	Strain-compensation measurement and simulation of InGaAs/GaAsP multiple quantum wells by metal organic vapor phase epitaxy using wafer-curvature. Journal of Applied Physics, 2011, 110, .	1.1	21
16	A Superlattice Solar Cell With Enhanced Short-Circuit Current and Minimized Drop in Open-Circuit Voltage. IEEE Journal of Photovoltaics, 2012, 2, 387-392.	1.5	20
17	Photocurrent Generation by Two-Step Photon Absorption With Quantum-Well Superlattice Cell. IEEE Journal of Photovoltaics, 2012, 2, 298-302.	1.5	20
18	Development of Blocked-Impurity-Band-Type Ge Detectors Fabricated with the Surface-Activated Wafer Bonding Method for Far-Infrared Astronomy. Journal of Low Temperature Physics, 2016, 184, 225-230.	0.6	20

#	Article	IF	CITATIONS
19	Carrier Escape Time and Temperature-Dependent Carrier Collection Efficiency of Tunneling-Enhanced Multiple Quantum Well Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 607-613.	1.5	19
20	GaAs:Se and GaAs:Te Photoconductive Detectors in 300 µm Region for Astronomical Observations. Japanese Journal of Applied Physics, 2008, 47, 8261-8264.	0.8	17
21	Identification of surface and volume hot-carrier thermalization mechanisms in ultrathin GaAs layers. Journal of Applied Physics, 2020, 128, 193102.	1.1	17
22	Effect of hetero-interfaces on in situ wafer curvature behavior in InGaAs/GaAsP strain-balanced MQWs. Journal of Crystal Growth, 2012, 352, 245-248.	0.7	16
23	Effect of GaAs Step Layer on InGaAs/GaAsP Quantum Well Solar Cells. Applied Physics Express, 2011, 4, 122301.	1.1	14
24	Effect of Quantum Well on the Efficiency of Carrier Collection in InGaAs/GaAsP Multiple Quantum Well Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 10ND04.	0.8	14
25	InGaAs/GaAsP superlattice solar cells with reduced carbon impurity grown by low-temperature metal-organic vapor phase epitaxy using triethylgallium. Journal of Applied Physics, 2014, 116, .	1.1	14
26	Thin-Film InGaAs/GaAsP MQWs Solar Cell With Backside Nanoimprinted Pattern for Light Trapping. IEEE Journal of Photovoltaics, 2014, 4, 1086-1090.	1.5	14
27	Carrier Time-of-Flight Measurement Using a Probe Structure for Direct Evaluation of Carrier Transport in Multiple Quantum Well Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1518-1525.	1.5	13
28	Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique. Applied Physics Letters, 2015, 107, .	1.5	13
29	Optimized interfacial management for InGaAs/GaAsP strain-compensated superlattice structure. Journal of Crystal Growth, 2013, 370, 157-162.	0.7	12
30	Growth of InGaAs/GaAsP multiple quantum well solar cells on mis-orientated GaAs substrates. Journal of Applied Physics, 2014, 115, 233104.	1.1	12
31	Thickness-modulated InGaAs/GaAsP superlattice solar cells on vicinal substrates. Journal of Applied Physics, 2015, 117, .	1.1	12
32	Comparison of Electron and Hole Mobilities in Multiple-Quantum-Well Solar Cells Using a Time-of-Flight Technique. IEEE Journal of Photovoltaics, 2015, 5, 1613-1620.	1.5	12
33	Experimental Demonstration of Optically Determined Solar Cell Current Transport Efficiency Map. IEEE Journal of Photovoltaics, 2016, 6, 528-531.	1.5	12
34	Effect of GaAs Step Layer Thickness in InGaAs/GaAsP Stepped Quantum-Well Solar Cell. IEEE Journal of Photovoltaics, 2013, 3, 289-294.	1.5	11
35	Modeling and design for lowâ€cost multijunction solar cell via lightâ€trapping rear texture technique: Applied in InGaP/GaAs/InGaAs triple junction. Progress in Photovoltaics: Research and Applications, 2020, 28, 251-265.	4.4	11
36	Microscopy and Electrical Properties of Ge/Ge Interfaces Bonded by Surface-Activated Wafer Bonding Technology. Japanese Journal of Applied Physics, 2011, 50, 015701.	0.8	10

#	Article	IF	CITATIONS
37	Strain effect for different phosphorus content of InGaAs/GaAsP super-lattice in GaAs p–i–n single junction solar cell. Journal of Crystal Growth, 2014, 401, 712-716.	0.7	10
38	Microscopy and Electrical Properties of Ge/Ge Interfaces Bonded by Surface-Activated Wafer Bonding Technology. Japanese Journal of Applied Physics, 2011, 50, 015701.	0.8	10
39	Effects of Strain on the Performance of InGaAs/GaAsP Multiple-Quantum-Well Solar Cells Correlated withIn situCurvature Monitoring. Applied Physics Express, 2012, 5, 062301.	1.1	9
40	Growth of InGaAs(P) in planetary metalorganic vapor phase epitaxy reactor using tertiarybutylarsine and tertiarybutylphosphine for photovoltaic applications. Japanese Journal of Applied Physics, 2018, 57, 08RD09.	0.8	9
41	Spatially Resolved Identification of Shunt Defects in Thin Film Solar Cells via Current Transport Efficiency Imaging Combined with 3D Finite Element Modeling. Solar Rrl, 2019, 3, 1800342.	3.1	9
42	Photoabsorption improvement in multi-stacked InGaAs/GaAs quantum dot solar cell with a light scattering rear texture. Solar Energy Materials and Solar Cells, 2020, 204, 110216.	3.0	9
43	High-Speed MOVPE Growth of InGaP Solar Cells. IEEE Journal of Photovoltaics, 2020, 10, 480-486.	1.5	9
44	Fabrication of Monolithic Integrated Series-Connected GaAs Photovoltaic Cells for Concentrator Applications. Japanese Journal of Applied Physics, 2012, 51, 10ND18.	0.8	8
45	Development for Germanium Blocked Impurity Band Far-Infrared Image Sensors with Fully-Depleted Silicon-On-Insulator CMOS Readout Integrated Circuit. Journal of Low Temperature Physics, 2016, 184, 217-224.	0.6	8
46	Electroluminescence-based quality characterization of quantum wells for solar cell applications. Journal of Crystal Growth, 2017, 464, 94-99.	0.7	8
47	Accelerated GaAs growth through MOVPE for low-cost PV applications. Journal of Crystal Growth, 2018, 489, 63-67.	0.7	8
48	Extremely High-Speed GaAs Growth by MOVPE for Low-Cost PV Application. IEEE Journal of Photovoltaics, 2018, , 1-8.	1.5	8
49	Electrical and Photoconductive Properties at 1.8 K of Germanium p ⁺ –i Junction Device Fabricated by Surface-Activated Wafer Bonding. Japanese Journal of Applied Physics, 2011, 50, 066503.	0.8	8
50	Impact of Strain Accumulation on InGaAs/GaAsP Multiple-Quantum-Well Solar Cells: Direct Correlation betweenIn situStrain Measurement and Cell Performances. Japanese Journal of Applied Physics, 2012, 51, 10ND16.	0.8	7
51	Enhanced Carrier Escape in MSQW Solar Cell and Its Impact on Photovoltaics Performance. IEEE Journal of Photovoltaics, 2012, 2, 221-226.	1.5	7
52	Quantitative optical measurement of chemical potentials in intermediate band solar cells. Journal of Photonics for Energy, 2015, 5, 053092.	0.8	7
53	24.5% efficient GaAs p-on-n solar cells with 120 <i>Âμ</i> m h ^{â°1} MOVPE growth. Journal Physics D: Applied Physics, 2019, 52, 105501.	1.3	7
54	Impact of Strain Accumulation on InGaAs/GaAsP Multiple-Quantum-Well Solar Cells: Direct Correlation betweenIn situStrain Measurement and Cell Performances. Japanese Journal of Applied Physics, 2012, 51, 10ND16.	0.8	7

#	Article	IF	CITATIONS
55	200nm-Thick GaAs solar cells with a nanostructured silver mirror. , 2016, , .		6
56	Strain-Balanced InGaAs/GaAsP Superlattice Solar Cell with Enhanced Short-Circuit Current and a Minimal Drop in Open-Circuit Voltage. Applied Physics Express, 2012, 5, 052301.	1.1	5
57	Open-circuit-voltage enhancement of the III-V super-lattice solar cells under optical concentration. , 2012, , .		5
58	Effect of Barrier Thickness on Carrier Transport Inside Multiple Quantum Well Solar Cells Under High-Concentration Illumination. IEEE Journal of Photovoltaics, 2015, 5, 846-853.	1.5	5
59	Effect of low-V/III-ratio metalorganic vapor-phase epitaxy on GaAs solar cells. Japanese Journal of Applied Physics, 2017, 56, 08MC06.	0.8	5
60	Solar to Hydrogen Conversion using Concentrated Multi-junction Photovoltaics and Distributed Micro-Converter Architecture. , 2018, , .		5
61	Fabrication of the GaAs based terahertz photoconductors and the photometer for Tera-GATE. , 2008, , .		4
62	Quasi-Fermi level splitting evaluation based on electroluminescence analysis in multiple quantum-well solar cells for investigating cell performance under concentrated light. Proceedings of SPIE, 2016, , .	0.8	4
63	Effective drift mobility approximation in multiple quantum-well solar cell. , 2016, , .		4
64	Maskless fabrication of broadband antireflection nanostructures on glass surfaces. Journal of Optics (United Kingdom), 2016, 18, 064008.	1.0	4
65	Design of free-barrier InGaAs/GaNAs multiple quantum well solar cells with 1.2 eV energy gap. Japanese Journal of Applied Physics, 2017, 56, 08MA04.	0.8	4
66	Stability and controllability of InGaAs/GaAsP wire-on-well (WoW) structure for multi-junction solar cells. Journal of Crystal Growth, 2017, 464, 86-93.	0.7	4
67	Transport efficiency imaging in multi-junction solar cells by luminescence analysis. , 2018, , .		4
68	Thin-film multiple-quantum-well solar cells fabricated by epitaxial lift-off process. Japanese Journal of Applied Physics, 2018, 57, 08RF03.	0.8	4
69	Current transport efficiency analysis of multijunction solar cells by luminescence imaging. Progress in Photovoltaics: Research and Applications, 2019, 27, 835-843.	4.4	4
70	Antibacterial Effects of Unripe Cephalotaxus harringtonia Fruit Extract on Gram-positive Bacteria. Journal of the Japanese Society for Food Science and Technology, 2009, 56, 533-540.	0.1	3
71	Optimization of Gas-Switching Sequence for InGaAs/GaAsP Superlattice Structures Usingln situWafer Curvature Monitoring. Japanese Journal of Applied Physics, 2012, 51, 10ND09.	0.8	3
72	Light trapping structure with backside scatterer for enhanced photo-absorption by quantum structures. , 2012, , .		3

#	Article	IF	CITATIONS
73	High-aspect-ratio structures for efficient light absorption and carrier transport in InGaAs/GaAsP multiple quantum well solar cells. , 2012, , .		3
74	Comprehensive validation of Carrier Collection Efficiency in multiple quantum well solar cells: For more effective and direct evaluation of carrier transport dynamics. , 2013 , , .		3
75	Surface activated Ge/GaAs wafer bonding for multi-junction solar cells. , 2014, , .		3
76	Plasma etching antireflection nanostructures on optical elements in concentrator photovoltaic systems. Journal of Photonics for Energy, 2014, 5, 057006.	0.8	3
77	Optical analysis of the photon recycling effect in InGaAs/GaAsP multiple quantum well solar cell with light trapping structure. , 2016, , .		3
78	Creation and Value of Synthetic High-Frequency Solar Inputs for Distribution System QSTS Simulations. , 2017, , .		3
79	High throughput MOVPE and accelerated growth rate of GaAs for PV application. Journal of Crystal Growth, 2019, 509, 87-90.	0.7	3
80	Comparison of Effective Carrier Mobility Between Wire on Well and Planar Superlattice Using Time-of-Flight Measurement. IEEE Journal of Photovoltaics, 2020, 10, 1008-1014.	1.5	3
81	Background-limited operation of 4K-cryocooled THz photoconductive detector system with a wide frequency range of 0.8 to 4THz., 2009,,.		2
82	Development of Germanium BIB detector with surface activated bonding and Molecular-Beam Epitaxial crystal growth. , $2010, $,		2
83	Electrical and Photoconductive Properties at 1.8 K of Germanium p+–i Junction Device Fabricated by Surface-Activated Wafer Bonding. Japanese Journal of Applied Physics, 2011, 50, 066503.	0.8	2
84	In GaAs/GaAsP asymmetric quantum wells for enhancing carrier escape through resonant tunneling. , 2012, , .		2
85	Exploring the potential of quantum wells for efficiency enhancement in photovoltaic cells. Proceedings of SPIE, 2012, , .	0.8	2
86	Performance of monolithic integrated series-connected GaAs solar cells under concentrated light. , 2013, , .		2
87	Carrier collection efficiency in multiple quantum well solar cells. , 2013, , .		2
88	Thin-film solar cells with InGaAs/GaAsP multiple quantum wells and a rear surface etched with light trapping micro-hole array. Japanese Journal of Applied Physics, 2015, 54, 08KA13.	0.8	2
89	Concentrated photovoltaic electrochemical cell (CPEC): A route toward high-efficiency, cost-effective solar hydrogen production. , 2015, , .		2
90	Effect of ion species for the surface activated bonding of GaAs wafers on the characteristics of the bonded interfaces. , 2015 , , .		2

#	Article	IF	CITATIONS
91	Effects of various dopants on properties of GaAs tunneling junctions and p–i–n solar cells. Japanese Journal of Applied Physics, 2017, 56, 08MC11.	0.8	2
92	Photovoltaic Array Differential Backside Exposure Conditions: Backsheet Degradation and Site Design. , 2017, , .		2
93	Fabrication and optical characterization of ultrathin III-V transferred heterostructures for hot-carrier absorbers. , 2020, , .		2
94	Optimization of Gas-Switching Sequence for InGaAs/GaAsP Superlattice Structures UsingIn situWafer Curvature Monitoring. Japanese Journal of Applied Physics, 2012, 51, 10ND09.	0.8	2
95	Development of GaAs photoconductors for far-infrared/submillimeter astronomy. , 2004, 5498, 637.		1
96	GaAs extrinsic photoconductors for the terahertz astronomy. , 2007, , .		1
97	Carrier sweep-out time in InGaAs/GaAsP multiple quantum well solar cells by time-resolved photoluminescence: effects of well depth and barrier thickness., 2012,,.		1
98	Effects of Background Zn Doping on the Performance of InGaAs/GaAsP Multiple Quantum Well Solar Cells Grown by a Planetary Metal Organic Vapor Phase Epitaxy Reactor. Japanese Journal of Applied Physics, 2012, 51, 10ND15.	0.8	1
99	Electrical conduction property at InAs/Si(111) interface by selective-area MOVPE., 2012,,.		1
100	Analysis for current-voltage characteristics of the InGaAs/GaAsP super-lattice solar cells under optical concentration. , 2013, , .		1
101	Over 12% Light to Hydrogen Energy Conversion Efficiency of Hydrogen Generation from Water: New System Concept, Concentrated Photovoltaic Electrochemical Cell (CPEC). Materials Research Society Symposia Proceedings, 2013, 1491, 52.	0.1	1
102	A superlattice solar cell for enhanced current output and minimized drop in open-circuit voltage under sunlight concentration. , 2013 , , .		1
103	Development of the monolighically interconnected InGaP/GaAs dual junction solar cell with bypass diode for ultrahigh concentrator application. , 2014, , .		1
104	Hyperspectral Imaging of Photovoltaic Conversion. Materials Research Society Symposia Proceedings, 2014, 1670, 57.	0.1	1
105	Lattice-matched 3-junction cell with 1.2-eV InGaAs/GaAsP superlattice middle cell for improved current matching. , 2015, , .		1
106	Investigation of carrier collection in multi-quantum well solar cells by luminescence spectra analysis. , 2015, , .		1
107	Photocurrent collection mechanism and role of carrier distribution in p-i-n quantum well solar cells. , 2016, , .		1
108	A Demonstration of TIA Using FD-SOI CMOS OPAMP for Far-Infrared Astronomy. Journal of Low Temperature Physics, 2016, 184, 449-453.	0.6	1

#	Article	lF	Citations
109	Carrier Collection Improvement in InGaAs/GaAsN Multiple Quantum Well Solar Cell with Flat Conduction Band. , 2018 , , .		1
110	Comparison of Effective Carrier Mobility between Wire on Well and Multiple Quantum Well by Time of Flight Measurement. , 2018, , .		1
111	Evaluation of the compensation ratio of heavily-Ga doped Ge for far-infrared detectors in astronomy. Japanese Journal of Applied Physics, 2018, 57, 116701.	0.8	1
112	Effects of Background Zn Doping on the Performance of InGaAs/GaAsP Multiple Quantum Well Solar Cells Grown by a Planetary Metal Organic Vapor Phase Epitaxy Reactor. Japanese Journal of Applied Physics, 2012, 51, 10ND15.	0.8	1
113	Smooth surface morphology and long carrier lifetime of InGaP realized by lowâ€ŧemperatureâ€grown cover layer. Physica Status Solidi (B): Basic Research, 0, , .	0.7	1
114	Optical design of image stabilizing Cassegrain-like balloon-borne telescope. Proceedings of SPIE, 2008,	0.8	0
115	THz balloon-borne telescope: Tera-GATE project. , 2008, , .		0
116	Development of the GaAs-based THz Photoconductor and Balloon-borne Experiment Module TG-ZERO. , 2009, , .		0
117	Self-assembled SiO<inf>2</inf> particle coating on 2 layer anti-reflection films for efficiency enhancement of GaAs PV cells. , 2010 , , .		О
118	Fabrication of graded refractive index 3-dimensional anti-reflection structure using self-assembled SiO $$ inf $$ 2 $$ ano particles. , 2011, , .		0
119	Efficiency simulations of top surface light management structures for concentrator solar cells using RCWA and detailed balance theory. , 2012 , , .		O
120	A multi-step superlattice solar cell with enhanced subband absorption and open circuit voltage. , 2012, , .		0
121	InGaAs/GaAsP quantum-well superlattice solar cell for better carrier collection and higher efficiency., 2012,,.		0
122	Fabrication of broadband antireflection structures on glass substrates by Reactive Ion Etching for application on homogenizers in CPV systems. , 2013, , .		0
123	Metalorganic vapor phase epitaxy growth of dual junction solar cell with InGaAs/GaAsP superlattice on Ge. , 2013, , .		O
124	Evaluation of asymmetric tunneling-assisted structure for InGaAs/GaAsP MQWs solar cell. , 2013, , .		0
125	High-aspect-ratio structures for efficient light absorption and carrier transport in InGaAs/GaAsP multiple quantum well solar cells., 2013,,.		0
126	Hyperspectral Imaging of Photovoltaic Conversion $\hat{a} \in \mathbb{C}$ ERRATUM. Materials Research Society Symposia Proceedings, 2014, 1670, 1.	0.1	0

#	Article	IF	Citations
127	Four-fold MQWs absorption enhancement in a 430 nm thick InGaAs/GaAsP MQWs solar cell. , 2014, , .		О
128	Characterization of Photovoltaic Absorbers for High Throughput Processing. Materials Research Society Symposia Proceedings, 2014, 1709, 24.	0.1	0
129	Directly bonded Ge/GaAs by surface activated bonding for high efficiency III& \pm x2013;V multi-junction solar cells. , 2014, , .		O
130	Errata to "High-Aspect-Ratio Structures for Efficient Light Absorption and Carrier Transport in InGaAs/GaAsP Multiple Quantum Well Solar Cells―[Apr 13 859-867]. IEEE Journal of Photovoltaics, 2015, 5, 704-704.	1.5	0
131	Comparison of electron and hole mobilities in multiple quantum well solar cells using a time-of-flight technique. , $2015, , .$		0
132	Admittance spectroscopy analysis on the interfacial defect levels in the surface-activated bonding of GaAs. , $2016, , .$		0
133	(Invited) Analysis of Defect Levels at GaAs/GaAs Surface-Activated Bonding Interface for Multi-Junction Solar Cells. ECS Transactions, 2016, 75, 33-38.	0.3	0
134	Characterisation of multi-junction solar cells by mapping of the carrier transport efficiency using luminescence emission. , 2017, , .		0
135	Development of GaAs//Si current-balanced dual junction solar cell integrated by surface-activated bonding. , 2017, , .		0
136	200nm-thick GaAs solar cells with a nanostructured silver mirror. , 2017, , .		0
137	Analysis of Deposited Residues and Its Cleaning Process on GaAs Substrate after Epitaxial Lift-Off. , 2017, , .		0
138	Design of $InGaP/GaAs/InGaAs$ multi-junction cells with reduced layer thicknesses using light-trapping rear texture. , 2017, , .		0
139	Epitaxial Lift-Off of Ultrathin Heterostructures for Hot-Carrier Solar Cell Applications. , 2019, , .		0
140	InGaAs/GaAsP quantum wells and wires for high-efficiency photovoltaic applications. , 2016, , .		0
141	Characterization of InGaAs/GaAsN multiple quantum well with flat conduction band for improving carrier transport in multijuction solar cell. , 2018, , .		О
142	Light absorption enhancement in ultra-thin layers for hot-carrier solar cells: first developments towards the experimental demonstration of an enhanced hot-carrier effect with light trapping., 2019,		0
143	Effective mobility map for InGaP/InGaP multiple quantum-well-based solar cells. , 2019, , .		0
144	Design of concentrator multijunction solar modules for UV-LED disinfection of water in off-the-grid areas. , 2020, , .		0

#	Article	IF	CITATIONS
145	Enhanced Radiative Efficiency of InGaAs/GaAsP Multiple Quantum Wells by Optimizing the Thickness of Interlayers. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0