
Jeroen Roelofs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7633384/publications.pdf Version: 2024-02-01

IEDOEN ROELOES

#	Article	IF	CITATIONS
1	Proteaphagy is specifically regulated and requires factors dispensable for general autophagy. Journal of Biological Chemistry, 2022, 298, 101494.	3.4	19
2	Proteaphagy and the Trafficking of Proteasomes under Nutrient Stress Conditions. , 2022, 1, 21-24.		0
3	Proteasome Localization is Regulated Through Mitochondrial Respiration and Kinase Signaling. FASEB Journal, 2022, 36, .	0.5	0
4	Proteasome Shuttle Factors Regulate the Relocalization of Proteasomes to Cytosolic Granules upon Specific Stress Conditions. FASEB Journal, 2022, 36, .	0.5	0
5	Proteasome activator Blm10 levels and autophagic degradation directly impact the proteasome landscape. Journal of Biological Chemistry, 2021, 296, 100468.	3.4	6
6	Structures of chaperone-associated assembly intermediates reveal coordinated mechanisms of proteasome biogenesis. Nature Structural and Molecular Biology, 2021, 28, 418-425.	8.2	29
7	The Extent of Extended-Ubiquitin Binding to the Proteasome. Structure, 2020, 28, 489-491.	3.3	4
8	Tagging the proteasome active site β5 causes tag specific phenotypes in yeast. Scientific Reports, 2020, 10, 18133.	3.3	7
9	Cooperativity in Proteasome Core Particle Maturation. IScience, 2020, 23, 101090.	4.1	5
10	Cooperativity in Proteasome Core Particle Autocatalytic Processing. FASEB Journal, 2019, 33, 466.4.	0.5	0
11	Native Gel Approaches in Studying Proteasome Assembly and Chaperones. Methods in Molecular Biology, 2018, 1844, 237-260.	0.9	14
12	A retrospective survey of the causes of bracket- and tube-bonding failures. Angle Orthodontist, 2017, 87, 111-117.	2.4	26
13	Physiological and Molecular Characterization of Hydroxyphenylpyruvate Dioxygenase (HPPD)-inhibitor Resistance in Palmer Amaranth (Amaranthus palmeri S.Wats.). Frontiers in Plant Science, 2017, 8, 555.	3.6	69
14	Phosphorylation of the C-terminal tail of proteasome subunit α7 is required for binding of the proteasome quality control factor Ecm29. Scientific Reports, 2016, 6, 27873.	3.3	23
15	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
16	Starvation Induces Proteasome Autophagy with Different Pathways for Core and Regulatory Particles. Journal of Biological Chemistry, 2016, 291, 3239-3253.	3.4	98
17	Maturation of the proteasome core particle induces an affinity switch that controls regulatory particle association. Nature Communications, 2015, 6, 6384.	12.8	39
18	Proteasome inhibition by bortezomib: A left hook and a right punch. EBioMedicine, 2015, 2, 619-620.	6.1	2

JEROEN ROELOFS

#	Article	IF	CITATIONS
19	Affinity Switch during Proteasome Core Particle Maturation that Regulates Pba1–Pba2 and Regulatory Particle Association. FASEB Journal, 2015, 29, 894.3.	0.5	0
20	1.15â€Ã resolution structure of the proteasome-assembly chaperone Nas2 PDZ domain. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 418-423.	0.8	7
21	The Proteasome-associated Protein Ecm29 Inhibits Proteasomal ATPase Activity and in Vivo Protein Degradation by the Proteasome. Journal of Biological Chemistry, 2013, 288, 29467-29481.	3.4	48
22	Reconfiguration of the proteasome during chaperone-mediated assembly. Nature, 2013, 497, 512-516.	27.8	73
23	Loss of Rpt5 Protein Interactions with the Core Particle and Nas2 Protein Causes the Formation of Faulty Proteasomes That Are Inhibited by Ecm29 Protein. Journal of Biological Chemistry, 2011, 286, 36641-36651.	3.4	55
24	Assembly manual for the proteasome regulatory particle: the first draft. Biochemical Society Transactions, 2010, 38, 6-13.	3.4	29
25	Assembly, structure, and function of the 26S proteasome. Trends in Cell Biology, 2010, 20, 391-401.	7.9	208
26	Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature, 2009, 459, 861-865.	27.8	166
27	Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature, 2009, 459, 866-870.	27.8	125
28	Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nature Structural and Molecular Biology, 2007, 14, 1180-1188.	8.2	140
29	A Proteomic Strategy for Quantifying Polyubiquitin Chain Topologies. Israel Journal of Chemistry, 2006, 46, 171-182.	2.3	20
30	Activation of Soluble Guanylyl Cyclase at the Leading Edge during Dictyostelium Chemotaxis. Molecular Biology of the Cell, 2005, 16, 976-983.	2.1	25
31	Sensitization of Dictyostelium chemotaxis by phosphoinositide-3-kinase-mediated self-organizing signalling patches. Journal of Cell Science, 2004, 117, 2925-2935.	2.0	95
32	cGMP signalling: different ways to create a pathway. Trends in Genetics, 2003, 19, 132-134.	6.7	10
33	A proteomics approach to understanding protein ubiquitination. Nature Biotechnology, 2003, 21, 921-926.	17.5	1,465
34	Phosducin-like proteins in Dictyostelium discoideum: implications for the phosducin family of proteins. EMBO Journal, 2003, 22, 5047-5057.	7.8	54
35	Uniform cAMP Stimulation of Dictyostelium Cells Induces Localized Patches of Signal Transduction and Pseudopodia. Molecular Biology of the Cell, 2003, 14, 5019-5027.	2.1	98
36	Characterization of Two Unusual Guanylyl Cyclases fromDictyostelium. Journal of Biological Chemistry, 2002, 277, 9167-9174.	3.4	42

JEROEN ROELOFS

#	Article	IF	CITATIONS
37	Deducing the Origin of Soluble Adenylyl Cyclase, a Gene Lost in Multiple Lineages. Molecular Biology and Evolution, 2002, 19, 2239-2246.	8.9	42
38	Reduced Protein Diffusion Rate by Cytoskeleton in Vegetative and Polarized Dictyostelium Cells. Biophysical Journal, 2001, 81, 2010-2019.	0.5	111
39	Identification and characterization of DdPDE3, a cGMP-selective phosphodiesterase from Dictyostelium. Biochemical Journal, 2001, 353, 635.	3.7	23
40	Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase. Biochemical Journal, 2001, 354, 697.	3.7	37
41	Guanylate cyclase in Dictyostelium discoideum with the topology of mammalian adenylate cyclase. Biochemical Journal, 2001, 354, 697-706.	3.7	43
42	The Dictyostelium homologue of mammalian soluble adenylyl cyclase encodes a guanylyl cyclase. EMBO Journal, 2001, 20, 4341-4348.	7.8	64
43	Genes lost during evolution. Nature, 2001, 411, 1013-1014.	27.8	80
44	GTPÎ ³ S Regulation of a 12-Transmembrane Guanylyl Cyclase Is Retained after Mutation to an Adenylyl Cyclase. Journal of Biological Chemistry, 2001, 276, 40740-40745.	3.4	12