List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7632571/publications.pdf Version: 2024-02-01

125 papers	8,648 citations	57758 44 h-index	45317 90 g-index
127	127	127	9252
all docs	docs citations	times ranked	citing authors

CHILLANC

#	Article	IF	CITATIONS
1	Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano, 2017, 11, 2459-2469.	14.6	700
2	Strong Sulfur Binding with Conducting Magnéli-Phase Ti _{<i>n</i>} O _{2<i>n</i>–1} Nanomaterials for Improving Lithium–Sulfur Batteries. Nano Letters, 2014, 14, 5288-5294.	9.1	643
3	Sn ⁴⁺ Ion Decorated Highly Conductive Ti ₃ C ₂ MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. ACS Nano, 2016, 10, 2491-2499.	14.6	632
4	3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries. Nano Energy, 2017, 37, 177-186.	16.0	431
5	Amorphous Fe2O3 as a high-capacity, high-rate and long-life anode material for lithium ion batteries. Nano Energy, 2014, 4, 23-30.	16.0	307
6	Efficient Activation of Li ₂ S by Transition Metal Phosphides Nanoparticles for Highly Stable Lithium–Sulfur Batteries. ACS Energy Letters, 2017, 2, 1711-1719.	17.4	252
7	Mg ₂ B ₂ O ₅ Nanowire Enabled Multifunctional Solid-State Electrolytes with High Ionic Conductivity, Excellent Mechanical Properties, and Flame-Retardant Performance. Nano Letters, 2018, 18, 3104-3112.	9.1	245
8	Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 575, 246-256.	5.5	233
9	Atomic Sulfur Covalently Engineered Interlayers of Ti ₃ C ₂ MXene for Ultraâ€Fast Sodiumâ€Ion Storage by Enhanced Pseudocapacitance. Advanced Functional Materials, 2019, 29, 1808107.	14.9	213
10	Facilitation of sulfur evolution reaction by pyridinic nitrogen doped carbon nanoflakes for highly-stable lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 1-9.	18.0	208
11	Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. Journal of Materials Chemistry A, 2018, 6, 7794-7806.	10.3	186
12	All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: Effect of binder content. Journal of Power Sources, 2018, 391, 73-79.	7.8	168
13	Metal oxide nanoparticles induced step-edge nucleation of stable Li metal anode working under an ultrahigh current density of 15 mA cmâ^'2. Nano Energy, 2018, 45, 203-209.	16.0	153
14	Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 632-640.	10.3	151
15	Confining Sulfur in N-Doped Porous Carbon Microspheres Derived from Microalgaes for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 23782-23791.	8.0	148
16	Poly(ethylene oxide) reinforced Li6PS5Cl composite solid electrolyte for all-solid-state lithium battery: Enhanced electrochemical performance, mechanical property and interfacial stability. Journal of Power Sources, 2019, 412, 78-85.	7.8	141
17	Unraveling the Intra and Intercycle Interfacial Evolution of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2020, 10, 1903311.	19.5	141
18	A facile synthesis of Fe3O4/C composite with high cycle stability as anode material for lithium-ion batteries. Journal of Power Sources, 2013, 239, 466-474.	7.8	139

#	Article	IF	CITATIONS
19	lonic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 12934-12942.	10.3	126
20	Highly dispersed surface active species of Mn/Ce/TiW catalysts for high performance at low temperature NH3-SCR. Chemical Engineering Journal, 2017, 330, 1195-1202.	12.7	119
21	Hetero-interface constructs ion reservoir to enhance conversion reaction kinetics for sodium/lithium storage. Energy Storage Materials, 2019, 18, 107-113.	18.0	105
22	Green synthesis of graphite from CO2 without graphitization process of amorphous carbon. Nature Communications, 2021, 12, 119.	12.8	93
23	Silicon-Doped Argyrodite Solid Electrolyte Li ₆ PS ₅ I with Improved Ionic Conductivity and Interfacial Compatibility for High-Performance All-Solid-State Lithium Batteries. ACS Applied Materials & Interfaces, 2020, 12, 41538-41545.	8.0	90
24	Sustainable, inexpensive, naturally multi-functionalized biomass carbon for both Li metal anode and sulfur cathode. Energy Storage Materials, 2018, 15, 218-225.	18.0	88
25	Biomass derived Ni(OH)2@porous carbon/sulfur composites synthesized by a novel sulfur impregnation strategy based on supercritical CO2 technology for advanced Li-S batteries. Journal of Power Sources, 2018, 378, 73-80.	7.8	87
26	A novel catalyst precursor K ₂ TiF ₆ with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH ₄ . Chemical Communications, 2011, 47, 1740-1742.	4.1	78
27	Achieving efficient and stable interface between metallic lithium and garnet-type solid electrolyte through a thin indium tin oxide interlayer. Journal of Power Sources, 2020, 448, 227440.	7.8	75
28	Li–Mg–N–H-based combination systems for hydrogen storage. Journal of Alloys and Compounds, 2011, 509, 7844-7853.	5.5	73
29	Manganese hexacyanoferrate reinforced by PEDOT coating towards high-rate and long-life sodium-ion battery cathode. Journal of Materials Chemistry A, 2020, 8, 3222-3227.	10.3	73
30	The effects of tungsten and hydrothermal aging in promoting NH3-SCR activity on V2O5/WO3-TiO2 catalysts. Applied Surface Science, 2018, 459, 639-646.	6.1	72
31	Facile synthesis of porous Li2S@C composites as cathode materials for lithium–sulfur batteries. Journal of Power Sources, 2016, 306, 200-207.	7.8	71
32	Polyiodide-Shuttle Restricting Polymer Cathode for Rechargeable Lithium/Iodine Battery with Ultralong Cycle Life. ACS Applied Materials & Interfaces, 2018, 10, 17933-17941.	8.0	71
33	High-capacity SiO (0â‰ ¤ â‰ ¤) as promising anode materials for next-generation lithium-ion batteries. Journal of Alloys and Compounds, 2020, 842, 155774.	5.5	69
34	FeO/C anode materials of high capacity and cycle stability for lithium-ion batteries synthesized by carbothermal reduction. Journal of Alloys and Compounds, 2013, 565, 97-103.	5.5	64
35	One-pot Biotemplate Synthesis of FeS 2 Decorated Sulfur-doped Carbon Fiber as High Capacity Anode for Lithium-ion Batteries. Electrochimica Acta, 2016, 209, 201-209.	5.2	63
36	2 D MXeneâ€based Energy Storage Materials: Interfacial Structure Design and Functionalization. ChemSusChem, 2020, 13, 1409-1419.	6.8	63

#	Article	IF	CITATIONS
37	Unprecedented Selfâ€Healing Effect of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Battery. Small, 2021, 17, e2101326.	10.0	54
38	Empowering Metal Phosphides Anode with Catalytic Attribute toward Superior Cyclability for Lithiumâ€Ion Storage. Advanced Functional Materials, 2019, 29, 1809051.	14.9	52
39	TiC/NiO Core/Shell Nanoarchitecture with Battery-Capacitive Synchronous Lithium Storage for High-Performance Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2015, 7, 11842-11848.	8.0	51
40	A hybrid Si@FeSi _y /SiO _x anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis. Journal of Materials Chemistry A, 2015, 3, 10767-10776.	10.3	50
41	Enhancing Catalyzed Decomposition of Na ₂ CO ₃ with Co ₂ MnO _{<i>x</i>} Nanowire-Decorated Carbon Fibers for Advanced Na–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2018, 10, 17240-17248.	8.0	49
42	Supercritical CO ₂ mediated incorporation of sulfur into carbon matrix as cathode materials towards high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 212-222.	10.3	49
43	Understanding the role of K in the significantly improved hydrogen storage properties of a KOH-doped Li–Mg–N–H system. Journal of Materials Chemistry A, 2013, 1, 5031.	10.3	48
44	Puffed Rice Carbon with Coupled Sulfur and Metal Iron for High-Efficiency Mercury Removal in Aqueous Solution. Environmental Science & Technology, 2020, 54, 2539-2547.	10.0	46
45	A green and facile strategy for the low-temperature and rapid synthesis of Li ₂ S@PC–CNT cathodes with high Li ₂ S content for advanced Li–S batteries. Journal of Materials Chemistry A, 2018, 6, 9906-9914.	10.3	45
46	Homologous Strategy to Construct High-Performance Coupling Electrodes for Advanced Potassium-Ion Hybrid Capacitors. Nano-Micro Letters, 2021, 13, 14.	27.0	45
47	Enhanced dehydrogenation/hydrogenation kinetics of the Mg(NH2)2–2LiH system with NaOH additive. International Journal of Hydrogen Energy, 2011, 36, 2137-2144.	7.1	44
48	An Allâ€Prussianâ€Blueâ€Based Aqueous Sodiumâ€ion Battery. ChemElectroChem, 2019, 6, 4848-4853.	3.4	44
49	A new strategy for the construction of 3D TiO ₂ nanowires/reduced graphene oxide for high-performance lithium/sodium batteries. Journal of Materials Chemistry A, 2018, 6, 24256-24266.	10.3	43
50	Bio-templated fabrication of MnO nanoparticles in SiOC matrix with lithium storage properties. Chemical Engineering Journal, 2019, 359, 584-593.	12.7	43
51	Reaction Pathways Determined by Mechanical Milling Process for Dehydrogenation/Hydrogenation of the LiNH ₂ /MgH ₂ System. Chemistry - A European Journal, 2010, 16, 693-702.	3.3	40
52	Interfacial Reactions in Inorganic All‣olid‣tate Lithium Batteries. Batteries and Supercaps, 2021, 4, 8-38.	4.7	39
53	Sulfur synchronously electrodeposited onto exfoliated graphene sheets as a cathode material for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2015, 3, 16513-16519.	10.3	37
54	High-content of sulfur uniformly embedded in mesoporous carbon: a new electrodeposition synthesis and an outstanding lithium–sulfur battery cathode. Journal of Materials Chemistry A, 2017, 5, 5905-5911.	10.3	37

#	Article	IF	CITATIONS
55	Enhanced sulfide chemisorption by conductive Al-doped ZnO decorated carbon nanoflakes for advanced Li–S batteries. Nano Research, 2018, 11, 477-489.	10.4	36
56	Ca(BH4)2–LiBH4–MgH2: a novel ternary hydrogen storage system with superior long-term cycling performance. Journal of Materials Chemistry A, 2013, 1, 12285.	10.3	35
57	Improved hydrogen storage performance of Ca(BH4)2: a synergetic effect of porous morphology and in situ formed TiO2. Energy and Environmental Science, 2013, 6, 847.	30.8	35
58	Supercritical fluid assisted biotemplating synthesis of Si–O–C microspheres from microalgae for advanced Li-ion batteries. RSC Advances, 2016, 6, 69764-69772.	3.6	35
59	Local defects enhanced dehydrogenation kinetics of the NaBH4-added Li–Mg–N–H system. Physical Chemistry Chemical Physics, 2011, 13, 314-321.	2.8	34
60	Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries. Solid State Ionics, 2015, 269, 44-50.	2.7	34
61	A Solar-Driven Flexible Electrochromic Supercapacitor. Materials, 2020, 13, 1206.	2.9	34
62	Bio-templated Fabrication of Highly Defective Carbon Anchored MnO Anode Materials with High Reversible Capacity. Electrochimica Acta, 2015, 169, 159-167.	5.2	33
63	Electrical heating behavior of flexible thermoplastic polyurethane/Super-P nanoparticle composite films for advanced wearable heaters. Journal of Industrial and Engineering Chemistry, 2019, 71, 293-300.	5.8	33
64	Synthesis of hierarchical porous carbon from metal carbonates towards high-performance lithium storage. Green Chemistry, 2018, 20, 1484-1490.	9.0	32
65	Na ₂ Fe(SO ₄) ₂ : an anhydrous 3.6ÂV, low-cost and good-safety cathode for a rechargeable sodium-ion battery. Journal of Materials Chemistry A, 2019, 7, 13197-13204.	10.3	32
66	H ₂ O-induced self-propagating synthesis of hierarchical porous carbon: a promising lithium storage material with superior rate capability and ultra-long cycling life. Journal of Materials Chemistry A, 2017, 5, 18221-18229.	10.3	30
67	Synthesis and electrochemical performance of poly(vinylidene fluoride)/SiO2 hybrid membrane for lithium-ion batteries. Journal of Solid State Electrochemistry, 2019, 23, 519-527.	2.5	28
68	Solid–Solid Heterogeneous Catalysis: The Role of Potassium in Promoting the Dehydrogenation of the Mg(NH ₂) ₂ /2 LiH Composite. ChemSusChem, 2013, 6, 2181-2189.	6.8	27
69	Well-dispersed ultrafine Mn ₃ O ₄ nanocrystals on reduced graphene oxide with high electrochemical Li-storage performance. New Journal of Chemistry, 2014, 38, 4743-4747.	2.8	26
70	Supercritical CO ₂ -assisted synthesis of 3D porous SiOC/Se cathode for ultrahigh areal capacity and long cycle life Li–Se batteries. Journal of Materials Chemistry A, 2018, 6, 24773-24782.	10.3	26
71	3D Printing of Powderâ€Based Inks into Functional Hierarchical Porous TiO ₂ Materials. Advanced Engineering Materials, 2020, 22, 1901088.	3.5	26
72	Rare earth-Mg-Ni-based alloys with superlattice structure for electrochemical hydrogen storage. Journal of Alloys and Compounds, 2021, 887, 161381.	5.5	25

#	Article	IF	CITATIONS
73	Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. Physical Chemistry Chemical Physics, 2010, 12, 3108.	2.8	24
74	Toast-like porous carbon derived from one-step reduction of CaCO3 for electrochemical lithium storage. Carbon, 2018, 130, 559-565.	10.3	23
75	Improved high rate capability of Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material by surface modification with Co3O4. Journal of Alloys and Compounds, 2019, 783, 349-356.	5.5	22
76	N991/MWCNTs/PEO composite films with nano SiO 2 particles as filler for advanced flexible electric heating elements. Materials Research Bulletin, 2017, 90, 273-279.	5.2	21
77	Synthesis and electrochemical performance of nano TiO ₂ (B)-coated Li[Li _{0.2} Mn _{0.54} Co _{0.13} Ni _{0.13}]O ₂ cathode materials for lithium-ion batteries. New Journal of Chemistry, 2017, 41, 12962-12968.	2.8	21
78	Ultraefficient Conversion of CO ₂ into Morphology ontrolled Nanocarbons: A Sustainable Strategy toward Greenhouse Gas Utilization. Small, 2019, 15, e1902249.	10.0	21
79	Supercritical fluid assisted synthesis of titanium carbide particles embedded in mesoporous carbon for advanced Li-S batteries. Journal of Alloys and Compounds, 2017, 706, 227-233.	5.5	20
80	Correlation between composition and hydrogen storage behaviors of the Li2NH-MgNH combination system. Dalton Transactions, 2011, 40, 8179.	3.3	19
81	Hybrid nanoarchitecture of TiO 2 nanotubes and graphene sheet for advanced lithium ion batteries. Materials Research Bulletin, 2017, 96, 425-430.	5.2	19
82	Submicron silica as highâ^'capacity lithium storage material with superior cycling performance. Materials Research Bulletin, 2017, 96, 347-353.	5.2	19
83	Synthesis and electrochemical properties of LiMnPO4-modified Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material for Li-ion batteries. Electrochimica Acta, 2017, 235, 1-9.	5.2	19
84	Effects of Nd-modification on the activity and SO ₂ resistance of MnO _x /TiO ₂ catalysts for low-temperature NH ₃ -SCR. New Journal of Chemistry, 2018, 42, 12845-12852.	2.8	19
85	Freestanding layer-structure selenium cathodes with ultrahigh Se loading for high areal capacity Li-Se batteries. Electrochemistry Communications, 2019, 99, 16-21.	4.7	19
86	A Low-Cost and High-Efficiency Electrothermal Composite Film Composed of Hybrid Conductivity Fillers and Polymer Blends Matrix for High-Performance Plate Heater. Journal of Electronic Materials, 2021, 50, 3084-3094.	2.2	19
87	Electrochemical Performance of Structureâ€Đependent LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ in Aqueous Rechargeable Lithiumâ€ion Batteries. Energy Technology, 2018, 6, 391-396.	3.8	18
88	3D Printed Grapheneâ€Based 3000 K Probe. Advanced Functional Materials, 2021, 31, 2102994.	14.9	18
89	Green and Low-Temperature Synthesis of Foam-like Hierarchical Porous Carbon from CO ₂ as Superior Lithium Storage Material. ACS Applied Energy Materials, 2018, 1, 7123-7129.	5.1	17
90	Supercritical CO ₂ -Fluid-Assisted Synthesis of TiO ₂ Quantum Dots/Reduced Graphene Oxide Composites for Outstanding Sodium Storage Capability. ACS Applied Energy Materials, 2018, 1, 7213-7219.	5.1	17

#	Article	IF	CITATIONS
91	A Universal Strategy to Fabricate Metal Sulfides@Carbon Fibers As Freestanding and Flexible Anodes for High-Performance Lithium/Sodium Storage. ACS Applied Energy Materials, 2019, 2, 4421-4427.	5.1	17
92	A new magnesium hydride route to synthesize morphology-controlled Si/rGO nanocomposite towards high-performance lithium storage. Electrochimica Acta, 2020, 330, 135248.	5.2	17
93	Effect of gas back pressure on hydrogen storage properties and crystal structures of Li 2 Mg(NH) 2. International Journal of Hydrogen Energy, 2014, 39, 17754-17764.	7.1	16
94	Hierarchically assembled mesoporous carbon nanosheets with an ultra large pore volume for high-performance lithium–sulfur batteries. New Journal of Chemistry, 2019, 43, 1380-1387.	2.8	16
95	Facile fabrication of red phosphorus/TiO ₂ composites for lithium ion batteries. RSC Advances, 2014, 4, 60914-60919.	3.6	15
96	Electrochemical properties of Sn-doped Li3V2(PO4)3 cathode material synthesized via a citric acid assisted sol–gel method. Journal of Alloys and Compounds, 2015, 652, 298-306.	5.5	15
97	A low temperature MgH2-AlCl3-SiO2 system to synthesize nano-silicon for high-performance Li-ion batteries. Chemical Engineering Journal, 2021, 406, 126805.	12.7	15
98	Graphene/TiO2 decorated N-doped carbon foam as 3D porous current collector for high loading sulfur cathode. Materials Research Bulletin, 2021, 135, 111129.	5.2	15
99	High-Performance All-Solid-State Lithium–Sulfur Batteries Enabled by Slurry-Coated Li6PS5Cl/S/C Composite Electrodes. Frontiers in Energy Research, 2021, 8, .	2.3	15
100	Importing Tin Nanoparticles into Biomassâ€Derived Silicon Oxycarbides with Highâ€Rate Cycling Capability Based on Supercritical Fluid Technology. Chemistry - A European Journal, 2019, 25, 7719-7725.	3.3	14
101	Rose pollens as sustainable biotemplates for porous SiOC microellipsoids with enhanced lithium storage performance. Journal of Alloys and Compounds, 2020, 816, 152595.	5.5	14
102	Controllable synthesis and in situ TEM study of lithiation mechanism of high performance NaV ₃ O ₈ cathodes. Journal of Materials Chemistry A, 2015, 3, 3044-3050.	10.3	13
103	Supercritical CO2 assisted synthesis of sulfur-modified zeolites as high-efficiency adsorbents for Hg2+ removal from water. New Journal of Chemistry, 2018, 42, 3541-3550.	2.8	13
104	Enhanced Electrochemical Performance of Lithium–Sulfur Batteries with Surface Copolymerization of Cathode. Journal of the Electrochemical Society, 2019, 166, A5349-A5353.	2.9	13
105	Embedding submicron SiO2 into porous carbon as advanced lithium‒ion batteries anode with ultralong cycle life and excellent rate capability. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 227-233.	5.3	12
106	β-Cyclodextrin-modified porous ceramic membrane with enhanced ionic conductivity and thermal stability for lithium-ion batteries. Ionics, 2020, 26, 173-182.	2.4	12
107	Empowering polypropylene separator with enhanced polysulfide adsorption and reutilization ability for high-performance Li-S batteries. Materials Research Bulletin, 2021, 134, 111108.	5.2	12
108	Hydrogen Pressure-Dependent Dehydrogenation Performance of the Mg(NH ₂) ₂ –2LiH–0.07KOH System. ACS Applied Materials & Interfaces, 2020, 12, 15255-15261.	8.0	10

#	Article	IF	CITATIONS
109	CNT threaded porous carbon nitride nanoflakes as bifunctional hosts for lithium sulfide cathode. Journal of Alloys and Compounds, 2021, 887, 161356.	5.5	10
110	A flexible non-precious metal Fe-N/C catalyst for highly efficient oxygen reduction reaction. Nanotechnology, 2019, 30, 144001.	2.6	9
111	Lithium Sulfide as Cathode Materials for Lithium-Ion Batteries: Advances and Challenges. Journal of Chemistry, 2020, 2020, 1-17.	1.9	9
112	Lithium Batteries: Unraveling the Intra and Intercycle Interfacial Evolution of Li ₆ PS ₅ Clâ€Based Allâ€Solidâ€State Lithium Batteries (Adv. Energy Mater. 4/2020). Advanced Energy Materials, 2020, 10, 2070017.	19.5	9
113	Mechanochemical synthesis of carbon from CO2: Mechanism for milling process-dependent morphology of carbon. Journal of Alloys and Compounds, 2020, 830, 154681.	5.5	9
114	Interaction of metallic magnesium with ammonia: Mechanochemical synthesis of Mg(NH2)2 for hydrogen storage. Journal of Alloys and Compounds, 2022, 907, 164397.	5.5	9
115	Sand/carbon composites as low-cost lithium storage materials with superior electrochemical performance. New Journal of Chemistry, 2019, 43, 4123-4129.	2.8	7
116	Role of lithium hydride in tuning morphology and porosity of nanocarbons derived from CO2. Materials Today Nano, 2021, 16, 100134.	4.6	6
117	Electrochemical lithium storage properties of desert sands. Ionics, 2018, 24, 2233-2239.	2.4	4
118	Rational design of highly efficient metal-polyaniline/carbon cloth catalyst towards enhanced oxygen reduction reaction. Ionics, 2020, 26, 5065-5073.	2.4	4
119	Tremella-like porous carbon derived from one-step electroreduction of molten carbonates with superior rate capability for sodium-ion batteries. Ionics, 2020, 26, 2899-2907.	2.4	4
120	Milling Time-Dependent Lithium/Sodium Storage Performance of Carbons Synthesized by a Mechanochemical Reaction. Energy & Fuels, 2021, 35, 4596-4603.	5.1	4
121	Green synthesis of fig–like Li2S–Mo@C nanocomposites for advanced lithium–sulfur batteries. Electrochimica Acta, 2022, 426, 140756.	5.2	3
122	Facile and efficient synthesis of Li2Se particles towards high-areal capacity Li2Se cathode for advanced Li–Se battery. Sustainable Materials and Technologies, 2021, 29, e00288.	3.3	2
123	The Effects of Surfactants on Al ₂ O ₃ -Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2017, 33, 1189-1196.	4.9	1
124	N–Doped Porous Carbon Microspheres Derived from Yeast as Lithium Sulfide Hosts for Advanced Lithium-Ion Batteries. Processes, 2021, 9, 1822.	2.8	1
125	Carbon-Based Electrodes. ACS Symposium Series, 0, , 1-14.	0.5	0