es Vandamme

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7631973/publications.pdf Version: 2024-02-01

ES VANDAMME

#	Article	IF	CITATIONS
1	Efficiency evaluation of thermally and chemically regenerated activated carbons used in a water cleaning system by acoustic emission analysis. Journal of Porous Materials, 2021, 28, 451-469.	2.6	3
2	Biochar from raw and spent common ivy: Impact of preprocessing and pyrolysis temperature on biochar properties. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105294.	5.5	15
3	Surface Chemistry of Oil-Filled Organic Nanoparticle Coated Papers Analyzed Using Micro-Raman Mapping. Applied Spectroscopy, 2019, 73, 000370281880486.	2.2	3
4	Mini-Hydrocyclone Separation of Cyanobacterial and Green Algae: Impact on Cell Viability and Chlorine Consumption. Water (Switzerland), 2019, 11, 1473.	2.7	8
5	Enhanced phycocyanin and protein content of <i>Arthrospira</i> by applying neutral density and red light shading filters: a smallâ€scale pilot experiment. Journal of Chemical Technology and Biotechnology, 2019, 94, 2047-2054.	3.2	22
6	Boltzmann-Based Empirical Model to Calculate Volume Loss during Spirit Ageing. Beverages, 2019, 5, 60.	2.8	3
7	Microwave assisted and conventional pyrolysis of MDF – Characterization of the produced biochars. Journal of Analytical and Applied Pyrolysis, 2019, 138, 218-230.	5.5	52
8	Biological control of ciliate contamination in Chlamydomonas culture using the predatory copepod Acanthocyclops robustus. Algal Research, 2019, 37, 269-276.	4.6	5
9	Selective separation of microalgae cells using inertial microfluidics. Bioresource Technology, 2018, 252, 91-99.	9.6	86
10	Innovative harvesting processes for microalgae biomass production: A perspective from patent literature. Algal Research, 2018, 31, 469-477.	4.6	36
11	Impact of harvesting method on total lipid content and extraction efficiency for Phaeodactylum tricornutum. Separation and Purification Technology, 2018, 194, 362-367.	7.9	28
12	Natural chemicals produced by marine microalgae as predator deterrents can be used to control ciliates contamination in microalgal cultures. Algal Research, 2018, 29, 297-303.	4.6	16
13	Two-stage cultivation of Nannochloropsis oculata for lipid production using reversible alkaline flocculation. Bioresource Technology, 2017, 226, 18-23.	9.6	29
14	A 3D-printed mini-hydrocyclone for high throughput particle separation: application to primary harvesting of microalgae. Lab on A Chip, 2017, 17, 2459-2469.	6.0	63
15	Effects of pH, Salinity, Biomass Concentration, and Algal Organic Matter on Flocculant Efficiency of Synthetic Versus Natural Polymers for Harvesting Microalgae Biomass. Bioenergy Research, 2017, 10, 427-437.	3.9	56
16	Harvesting of algae in municipal wastewater treatment by calcium phosphate precipitation mediated by photosynthesis, sodium hydroxide and lime. Algal Research, 2017, 27, 115-120.	4.6	25
17	Bioflocculation as an innovative harvesting strategy for microalgae. Reviews in Environmental Science and Biotechnology, 2016, 15, 573-583.	8.1	132
18	Polyacrylonitrile membranes for microalgae filtration: Influence of porosity, surface charge and microalgae species on membrane fouling. Algal Research, 2016, 19, 128-137.	4.6	108

es Vandamme

#	Article	IF	CITATIONS
19	Flocculation properties of several microalgae and a cyanobacterium species during ferric chloride, chitosan and alkaline flocculation. Bioresource Technology, 2016, 220, 464-470.	9.6	106
20	Inhibition of alkaline flocculation by algal organic matter for Chlorella vulgaris. Water Research, 2016, 88, 301-307.	11.3	47
21	Screening of commercial natural and synthetic cationic polymers for flocculation of freshwater and marine microalgae and effects of molecular weight and charge density. Algal Research, 2015, 10, 183-188.	4.6	88
22	CO ₂ controlled flocculation of microalgae using pH responsive cellulose nanocrystals. Nanoscale, 2015, 7, 14413-14421.	5.6	60
23	Cultivation of Chlorella vulgaris and Arthrospira platensis with Recovered Phosphorus from Wastewater by Means of Zeolite Sorption. International Journal of Molecular Sciences, 2015, 16, 4250-4264.	4.1	30
24	Influence of culture medium recycling on the performance of Arthrospira platensis cultures. Algal Research, 2015, 10, 48-54.	4.6	74
25	Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Bioresource Technology, 2015, 194, 270-275.	9.6	75
26	Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite. Bioresource Technology, 2015, 196, 656-661.	9.6	41
27	Reversible Flocculation of Microalgae using Magnesium Hydroxide. Bioenergy Research, 2015, 8, 716-725.	3.9	46
28	Influence of magnesium concentration, biomass concentration and pH on flocculation of Chlorella vulgaris. Algal Research, 2014, 3, 24-29.	4.6	62
29	Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresource Technology, 2014, 155, 410-417.	9.6	105
30	Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of Arthrospira platensis. Bioresource Technology, 2014, 155, 373-378.	9.6	81
31	Floc characteristics of Chlorella vulgaris: Influence of flocculation mode and presence of organic matter. Bioresource Technology, 2014, 151, 383-387.	9.6	60
32	Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Research, 2014, 65, 186-202.	11.3	388
33	Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresource Technology, 2014, 166, 259-265.	9.6	84
34	Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresource Technology, 2014, 163, 228-235.	9.6	133
35	Role of transparent exopolymeric particles in membrane fouling: Chlorella vulgaris broth filtration. Bioresource Technology, 2013, 129, 18-25.	9.6	45
36	Influence of organic matter on flocculation of Chlorella vulgaris by calcium phosphate precipitation. Biomass and Bioenergy, 2013, 54, 107-114.	5.7	63

es Vandamme

#	Article	IF	CITATIONS
37	Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 2013, 31, 233-239.	9.3	730
38	Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption. Bioresource Technology, 2013, 138, 329-338.	9.6	119
39	Direct Role of Transparent Exopolymeric Particles (TEP) on Membrane Fouling of Microand Ultrafiltration. Procedia Engineering, 2012, 44, 537-538.	1.2	0
40	Simultaneous Cultivation and Pre-harvesting of Microalgae in a Lab-scale Membrane Photobioreactor (MPBR). Procedia Engineering, 2012, 44, 712-713.	1.2	0
41	Influence of organic matter generated by Chlorella vulgaris on five different modes of flocculation. Bioresource Technology, 2012, 124, 508-511.	9.6	127
42	Flocculation of Chlorella vulgaris induced by high pH: Role of magnesium and calcium and practical implications. Bioresource Technology, 2012, 105, 114-119.	9.6	334
43	Harvesting microalgal biomass using submerged microfiltration membranes. Bioresource Technology, 2012, 111, 343-352.	9.6	208
44	Evaluation of electro oagulation–flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering, 2011, 108, 2320-2329.	3.3	242
45	Flocculation of microalgae using cationic starch. Journal of Applied Phycology, 2010, 22, 525-530.	2.8	283