Edwin Gnos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7631766/publications.pdf

Version: 2024-02-01

201674 155660 3,203 81 27 55 h-index citations g-index papers 88 88 88 3093 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Episodes of fissure formation in the Alps: connecting quartz fluid inclusion, fissure monazite age, and fissure orientation data. Swiss Journal of Geosciences, 2021, 114, 14.	1.2	7
2	Meteorite terrestrial ages in Oman based on gamma spectrometry and sediment dating, focusing on the Ramlat Fasad dense collection area. Meteoritics and Planetary Science, 2021, 56, 2017-2034.	1.6	3
3	Ion microprobe dating of fissure monazite in the Western Alps: insights from the Argentera Massif and the Piemontais and Brian $ ilde{A}$ sonnais Zones. Swiss Journal of Geosciences, 2020, 113 , .	1.2	4
4	Dating tectonic activity in the Lepontine Dome and Rhone-Simplon Fault regions through hydrothermal monazite-(Ce). Solid Earth, 2020, 11, 199-222.	2.8	9
5	Cenozoic deformation in the Tauern Window (Eastern Alps) constrained by in situ Th-Pb dating of fissure monazite. Solid Earth, 2020, 11, 437-467.	2.8	5
6	Constraining deformation phases in the Aar Massif and the Gotthard Nappe (Switzerland) using Th-Pb crystallization ages of fissure monazite-(Ce). Lithos, 2019, 342-343, 223-238.	1.4	18
7	Geochronological and thermometric evidence of unusually hot fluids in an Alpine fissure of Lauzière granite (Belledonne, Western Alps). Solid Earth, 2019, 10, 211-223.	2.8	11
8	Insights into the tectonic history of the Western Alps through dating of fissure monazite in the Mont Blanc and Aiguilles Rouges Massifs. Tectonophysics, 2019, 750, 203-212.	2.2	12
9	Quenched primary melt in Ramlat as Sahmah 517 – Snapshot of ureilite anatexis in the early solar system. Geochimica Et Cosmochimica Acta, 2019, 246, 1-20.	3.9	7
10	Constraining longâ€term fault activity in the brittle domain through in situ dating of hydrothermal monazite. Terra Nova, 2018, 30, 440-446.	2.1	12
11	Meteorite reconnaissance in Saudi Arabia. Meteoritics and Planetary Science, 2018, 53, 2372-2394.	1.6	8
12	Sandstone sample analysis and additional structural data from Jabal Rayah, a possible impact structure in Saudi Arabia. Meteoritics and Planetary Science, 2018, 53, 2652-2660.	1.6	0
13	Thâ€Pb ion probe dating of zoned hydrothermal monazite and its implications for repeated shear zone activity: An example from the Central Alps, Switzerland. Tectonics, 2017, 36, 671-689.	2.8	34
14	Petrology and geochemistry of feldspathic impactâ€melt breccia Abar al' Uj 012, theÂfirst lunar meteorite from Saudi Arabia. Meteoritics and Planetary Science, 2016, 51, 1830-1848.	1.6	15
15	Weathering of ordinary chondrites from Oman: Correlation of weathering parameters with ¹⁴ C terrestrial ages and a refined weathering scale. Meteoritics and Planetary Science, 2016, 51, 1685-1700.	1.6	46
16	Dolomite microstructures between 390° and 700°C: Indications for deformation mechanisms and grain size evolution. Journal of Structural Geology, 2016, 89, 144-152.	2.3	8
17	Ca-Al-silicate inclusions in natural moissanite (SiC). American Mineralogist, 2016, 101, 71-81.	1.9	11
18	Age of cleft monazites in the eastern Tauern Window: constraints on crystallization conditions of hydrothermal monazite. Swiss Journal of Geosciences, 2015, 108, 55-74.	1.2	17

#	Article	IF	Citations
19	Ash Shutbah: A possible impact structure in Saudi Arabia. Meteoritics and Planetary Science, 2014, 49, 1902-1914.	1.6	5
20	Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar. Applied Geochemistry, 2014, 41, 218-228.	3.0	125
21	Late Quaternary history of the Vakinankaratra volcanic field (central Madagascar): insights from luminescence dating of phreatomagmatic eruption deposits. Bulletin of Volcanology, 2014, 76, 1.	3.0	15
22	"Sweating meteoritesâ€â€"Waterâ€soluble salts and temperature variation in ordinary chondrites and soil from the hot desert of Oman. Meteoritics and Planetary Science, 2013, 48, 1958-1980.	1.6	11
23	The Wabar impact craters, Saudi Arabia, revisited. Meteoritics and Planetary Science, 2013, 48, 2000-2014.	1.6	25
24	Light noble gases in 12 meteorites from the Omani desert, Australia, Mauritania, Canada, and Sweden. Meteoritics and Planetary Science, 2013, 48, 1401-1414.	1.6	14
25	Dating brittle tectonic movements with cleft monazite: Fluidâ€rock interaction and formation of REE minerals. Tectonics, 2013, 32, 1176-1189.	2.8	21
26	Microcrystals coating the wing membranes of a living insect (Psocoptera: Psyllipsocidae) from a Brazilian cave. Scientific Reports, 2012, 2, 408.	3.3	4
27	Constraints on fluid evolution during metamorphism from U–Th–Pb systematics in Alpine hydrothermal monazite. Chemical Geology, 2012, 326-327, 61-71.	3.3	74
28	Jiddat al Harasis 556: A howardite impact melt breccia with an H chondrite component. Meteoritics and Planetary Science, 2012, 47, 1558-1574.	1.6	19
29	Trabzonite, Ca ₄ [Si ₃ O ₉ (OH)]OH: crystal structure, revised formula, new occurrence and relation to killalaite. Mineralogical Magazine, 2012, 76, 455-472.	1.4	9
30	Proposing new approaches for dating young volcanic eruptions by luminescence methods. Geochronometria, 2012, 39, 48-56.	0.8	12
31	The timing of the tectono-metamorphic evolution at the Neoproterozoic–Phanerozoic boundary in central southern Madagascar. Precambrian Research, 2011, 185, 131-148.	2.7	27
32	Jiddat al Harasis 422: A ureilite with an extremely high degree of shock melting. Meteoritics and Planetary Science, 2011, 46, 134-148.	1.6	7
33	Very low strengths of interplanetary meteoroids and small asteroids. Meteoritics and Planetary Science, 2011, 46, 1525-1550.	1.6	145
34	DETRITAL MONAZITE IN THE TIM MERSOI BASIN, NIGER: PROVENANCE AND CONTRIBUTION TO THE URANIUM BUDGET IN SILICICLASTIC SEDIMENTS. Canadian Mineralogist, 2011, 49, 487-501.	1.0	5
35	Evaluation of the utility of handheld XRF in meteoritics. X-Ray Spectrometry, 2011, 40, 449-463.	1.4	20
36	Editorial: Tjerk Peters (1936–2009). Swiss Journal of Geosciences, 2010, 103, 1-2.	1.2	2

#	Article	IF	CITATIONS
37	A new perspective on the significance of the Ranotsara shear zone in Madagascar. International Journal of Earth Sciences, 2010, 99, 1827-1847.	1.8	22
38	PROVENANCE OF MARBLES FROM NAXOS BASED ON MICROSTRUCTURAL AND GEOCHEMICAL CHARACTERIZATION. Archaeometry, 2010, 52, 209-228.	1.3	21
39	Electrodynamic Disaggregation: Does it Affect Apatite Fissionâ€Track and (Uâ€Th)/He Analyses?. Geostandards and Geoanalytical Research, 2010, 34, 39-48.	3.1	18
40	Microstructures of coarse-grained marbles, analyzed using a new technique based on the bireflectance of calcite. Tectonophysics, 2009, 463, 175-184.	2.2	9
41	The Twannberg (Switzerland) IIG iron meteorites: Mineralogy, chemistry, and CRE ages. Meteoritics and Planetary Science, 2009, 44, 187-199.	1.6	15
42	The Jiddat al Harasis 073 strewn field, Sultanate of Oman. Meteoritics and Planetary Science, 2009, 44, 375-387.	1.6	28
43	Formation and composition of rhabdophane, bastnäte and hydrated thorium minerals during alteration: Implications for geochronology and low-temperature processes. Chemical Geology, 2008, 254, 238-248.	3.3	107
44	The complex exposure history of the Jiddat al Harasis 073 Lâ€chondrite shower. Meteoritics and Planetary Science, 2008, 43, 1691-1708.	1.6	20
45	UNUSUAL FIBROUS SODIAN TAINIOLITE EPITACTIC ON PHLOGOPITE FROM MARBLE XENOLITHS OF MONT SAINT-HILAIRE, QUEBEC, CANADA. Canadian Mineralogist, 2007, 45, 541-549.	1.0	5
46	Amino acid composition, petrology, geochemistry, ¹⁴ C terrestrial age and oxygen isotopes of the ShiÅŸr 033 CR chondrite. Meteoritics and Planetary Science, 2007, 42, 1581-1595.	1.6	50
47	The regolith portion of the lunar meteorite Sayh al Uhaymir 169. Meteoritics and Planetary Science, 2007, 42, 2137-2152.	1.6	12
48	Studies on Uruq al Hadd meteorite. Planetary and Space Science, 2007, 55, 859-863.	1.7	14
49	ShiÅŸr 043 (IIIAB medium octahedrite): The first iron meteorite from the Oman desert. Meteoritics and Planetary Science, 2006, 41, A217.	1.6	8
50	Late Neoproterozoic, Ordovician and Carboniferous events recorded in monazites from southern-central Madagascar. Precambrian Research, 2006, 144, 278-296.	2.7	34
51	Relationship among metamorphic grade, vesuvianite "rod polytypism," and vesuvianite composition. American Mineralogist, 2006, 91, 862-870.	1.9	28
52	Weathering of meteorites from Oman: Correlation of chemical and mineralogical weathering proxies with < sup > 14 < / sup > C terrestrial ages and the influence of soil chemistry. Meteoritics and Planetary Science, 2005, 40, 1215-1239.	1.6	106
53	Pinpointing the Source of a Lunar Meteorite: Implications for the Evolution of the Moon. Science, 2004, 305, 657-659.	12.6	140
54	Origin of diffuse superstructure reflections in labuntsovite-group minerals. American Mineralogist, 2004, 89, 1655-1666.	1.9	11

#	Article	IF	Citations
55	Compositional changes of a dicalcium phosphate dihydrate cement after implantation in sheep. Biomaterials, 2003, 24, 3463-3474.	11.4	132
56	Mantle xenolith-bearing Maastrichtian to Tertiary alkaline magmatism in Oman. Geochemistry, Geophysics, Geosystems, 2003, 4, n/a-n/a.	2.5	15
57	Rock-forming moissanite (natural α-silicon carbide). American Mineralogist, 2003, 88, 1817-1821.	1.9	53
58	The Source of the Great Dyke, Zimbabwe, and Its Tectonic Significance: Evidence from Reâ€Os Isotopes. Journal of Geology, 2003, 111, 565-578.	1.4	36
59	Manganvesuvianite and tweddillite, two new Mn3+-silicate minerals from the Kalahari manganese fields, South Africa. Mineralogical Magazine, 2002, 66, 137-150.	1.4	42
60	Crystal chemistry of the polysome ferrohogbomite-2N2S, a long-known but newly defined mineral species. European Journal of Mineralogy, 2002, 14, 957-967.	1.3	10
61	Cretaceous volcanic rocks of the South Tethyan suture zone, Pakistan: implications for the Réunion hotspot and Deccan Traps. Earth and Planetary Science Letters, 2002, 203, 295-310.	4.4	136
62	Sayh al Uhaymir 094: A new martian meteorite from the Oman desert. Meteoritics and Planetary Science, 2002, 37, 835-854.	1.6	52
63	<i>P</i> 4/ <i>n</i> and <i>P</i> 4 <i>no</i> 1000, 85, 563-569.	1.9	31
64	Tetrahedral vacancies and cation ordering in low-temperature Mn-bearing vesuvianites: Indication of a hydrogarnet-like substitution. American Mineralogist, 2000, 85, 570-577.	1.9	27
65	Kinoshitalite, Ba(Mg) ₃ (Al ₂ Si ₂)O ₁₀ (OH,F) ₂ , a brittle mica from a manganese deposit in Oman: Paragenesis and crystal chemistry. American Mineralogist, 2000. 85. 242-250.	1.9	25
66	Late Palaeozoic to Neogene geodynamic evolution of the northeastern Oman margin. Geological Magazine, 2000, 137, 1-18.	1.5	62
67	Stratigraphic and tectonic evolution of the northwestern Indian plate and Kabul Block. Geological Society Special Publication, 2000, 170, 467-476.	1.3	22
68	Hot and Dry Deep Crustal Xenoliths from Tibet. Science, 2000, 287, 2463-2466.	12.6	278
69	Peak Metamorphic Conditions of Garnet Amphibolites Beneath the Semail Ophiolite: Implications for an Inverted Pressure Gradient. International Geology Review, 1998, 40, 281-304.	2.1	70
70	Late Cretaceous/early Tertiary convergence between the Indian and Arabian plates recorded in ophiolites and related sediments. Tectonophysics, 1997, 271, 1-19.	2.2	146
71	The conundrum of samail: explaining the metamorphic history. Tectonophysics, 1997, 279, 215-226.	2,2	88
72	Rapid emplacement of the Oman ophiolite: Thermal and geochronologic constraints. Tectonics, 1996, 15, 1230-1247.	2.8	308

EDWIN GNOS

#	Article	lF	CITATION
73	Formation and evolution of the Masirah ophiolite constrained by paleomagnetic study of volcanic rocks. Tectonophysics, 1996, 253, 53-64.	2.2	25
74	Structural evolution of the northern end of the Oman Ophiolite and enclosed granulites. Tectonophysics, 1996, 254, 111-137.	2.2	37
7 5	Kanoite, donpeacorite and tirodite: Mn-Mg-silicates from a manganiferous quartzite in the United Arab Emirates. European Journal of Mineralogy, 1996, 8, 251-262.	1.3	8
76	Tephroite-hausmannite-galaxite from a granulite-facies manganese rock of the United Arab Emirates. Contributions To Mineralogy and Petrology, 1995, 120, 372-377.	3.1	13
77	40Ar/39Ar dating of the emplacement of the Muslim Bagh ophiolite, Pakistan. Tectonophysics, 1995, 250, 169-181.	2.2	48
78	A new structural interpretation for the emplacement of the Masirah ophiolites (Oman): a main Paleocene intra-oceanic thrust. Geodinamica Acta, 1995, 8, 13-19.	2.2	22
79	Tephroite-hausmannite-galaxite from a granulite-facies manganese rock of the United Arab Emirates. Contributions To Mineralogy and Petrology, 1995, 120, 372-377.	3.1	0
80	Sapphirine-quartz and sapphirine-corundum assemblages in metamorphic rocks associated with the Semail Ophiolite (United Arab Emirates). Contributions To Mineralogy and Petrology, 1994, 116, 398-410.	3.1	37
81	K-Ar ages of the metamorphic sole of the Semail Ophiolite: implications for ophiolite cooling history. Contributions To Mineralogy and Petrology, 1993, 113, 325-332.	3.1	62