Christopher J Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7631754/publications.pdf

Version: 2024-02-01

45 papers

5,112 citations

201575 27 h-index 243529 44 g-index

45 all docs 45 docs citations

times ranked

45

4425 citing authors

#	Article	IF	CITATIONS
1	Sex differences in kappa opioid receptor antinociception is influenced by the number of X chromosomes in mouse. Journal of Neuroscience Research, 2022, 100, 183-190.	1.3	15
2	Genetic and functional analysis of a Pacific hagfish opioid system. Journal of Neuroscience Research, 2022, 100, 19-34.	1.3	2
3	The effect of neuroimmune modulation on subjective response to alcohol in the natural environment. Alcoholism: Clinical and Experimental Research, 2022, 46, 876-890.	1.4	6
4	Effects of ibudilast on central and peripheral markers of inflammation in alcohol use disorder: A randomized clinical trial. Addiction Biology, 2022, 27, .	1.4	9
5	Oxycodone in the Opioid Epidemic: High †Liking', †Wanting', and Abuse Liability. Cellular and Molecu Neurobiology, 2021, 41, 899-926.	ula _{1.7}	44
6	Kappa Opioid Signaling at the Crossroads of Chronic Pain and Opioid Addiction. Handbook of Experimental Pharmacology, 2021, 271, 315-350.	0.9	6
7	Ibudilast, a neuroimmune modulator, reduces heavy drinking and alcohol cue-elicited neural activation: a randomized trial. Translational Psychiatry, 2021, 11, 355.	2.4	37
8	Chronic opioid pretreatment potentiates the sensitization of fear learning by trauma. Neuropsychopharmacology, 2020, 45, 482-490.	2.8	13
9	An Undergraduate Student‣ed Neuroscience Outreach Program Shows Promise in Shifting Teen Attitudes About Drugs. Mind, Brain, and Education, 2020, 14, 387-399.	0.9	3
10	\hat{l} '4-Opioid Receptors on Distinct Neuronal Populations Mediate Different Aspects of Opioid Reward-Related Behaviors. ENeuro, 2020, 7, ENEURO.0146-20.2020.	0.9	23
11	Quantitative assessments reveal improved neuroscience engagement and learning through outreach. Journal of Neuroscience Research, 2019, 97, 1153-1162.	1.3	9
12	Kappa Opioid Receptors Drive a Tonic Aversive Component of Chronic Pain. Journal of Neuroscience, 2019, 39, 4162-4178.	1.7	81
13	Non-nociceptive roles of opioids in the CNS: opioids' effects on neurogenesis, learning, memory and affect. Nature Reviews Neuroscience, 2019, 20, 5-18.	4.9	44
14	The gut microbiota mediates reward and sensory responses associated with regimen-selective morphine dependence. Neuropsychopharmacology, 2018, 43, 2606-2614.	2.8	130
15	Reducing Astrocyte Calcium Signaling InÂVivo Alters Striatal Microcircuits and Causes Repetitive Behavior. Neuron, 2018, 99, 1170-1187.e9.	3.8	234
16	Neurobiology of opioid dependence in creating addiction vulnerability. F1000Research, 2016, 5, 1748.	0.8	120
17	Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function. Journal of Neuroscience, 2016, 36, 3541-3551.	1.7	59
18	Allostatic Mechanisms of Opioid Tolerance Beyond Desensitization and Downregulation. Trends in Pharmacological Sciences, 2016, 37, 963-976.	4.0	99

#	Article	IF	CITATIONS
19	Neuroimmune Regulation of GABAergic Neurons Within the Ventral Tegmental Area During Withdrawal from Chronic Morphine. Neuropsychopharmacology, 2016, 41, 949-959.	2.8	95
20	Frontostriatal Circuit Dynamics Correlate with Cocaine Cue-Evoked Behavioral Arousal during Early Abstinence. ENeuro, 2016, 3, ENEURO.0105-16.2016.	0.9	5
21	Microglia Disrupt Mesolimbic Reward Circuitry in Chronic Pain. Journal of Neuroscience, 2015, 35, 8442-8450.	1.7	157
22	Does the kappa opioid receptor system contribute to pain aversion?. Frontiers in Pharmacology, 2014, 5, 253.	1.6	77
23	Targeted expression of $\hat{1}\frac{1}{4}$ -opioid receptors in a subset of striatal direct-pathway neurons restores opiate reward. Nature Neuroscience, 2014, 17, 254-261.	7.1	118
24	Correlation Between Ventral Striatal Catecholamine Content and Nociceptive Thresholds in Neuropathic Mice. Journal of Pain, 2014, 15, 878-885.	0.7	32
25	Regulation of $\langle i \rangle \hat{A} \mu \langle i \rangle$ -Opioid Receptors: Desensitization, Phosphorylation, Internalization, and Tolerance. Pharmacological Reviews, 2013, 65, 223-254.	7.1	673
26	Project Brainstorm: Using Neuroscience to Connect College Students with Local Schools. PLoS Biology, 2012, 10, e1001310.	2.6	9
27	Regional and Cell-Type-Specific Effects of DAMGO on Striatal D1 and D2 Dopamine Receptor-Expressing Medium-Sized Spiny Neurons. ASN Neuro, 2012, 4, AN20110063.	1.5	57
28	Localization and Regulation of Fluorescently Labeled Delta Opioid Receptor, Expressed in Enteric Neurons of Mice. Gastroenterology, 2011, 141, 982-991.e8.	0.6	58
29	Morphine Induces Desensitization of Insulin Receptor Signaling. Molecular and Cellular Biology, 2003, 23, 6255-6266.	1.1	57
30	Buprenorphine-Induced Antinociception Is Mediated by $\hat{l}\frac{1}{4}$ -Opioid Receptors and Compromised by Concomitant Activation of Opioid Receptor-Like Receptors. Journal of Neuroscience, 2003, 23, 10331-10337.	1.7	219
31	Neurotrophin Dependence Domain: A Domain Required for the Mediation of Apoptosis by the p75 Neurotrophin Receptor. Journal of Molecular Neuroscience, 2001, 15, 215-230.	1.1	33
32	ORL-1 and Mu opioid receptor antisera label different fibers in areas involved in pain processing. , 1998, 399, 373-383.		61
33	Orphanin FQ inhibits synaptic transmission and long-term potentiation in rat hippocampus. Hippocampus, 1997, 7, 88-94.	0.9	114
34	Multiple opioid receptor-like genes are identified in diverse vertebrate phyla. FEBS Letters, 1996, 397, 25-29.	1.3	61
35	Mu opioid receptor-like sequences are present throughout vertebrate evolution. Journal of Molecular Evolution, 1996, 43, 179-184.	0.8	40
36	Immunohistochemical localization of ORL-1 in the central nervous system of the rat. Journal of Comparative Neurology, 1996, 368, 229-251.	0.9	283

#	Article	IF	CITATIONS
37	Modulating autoimmune responses to GAD inhibits disease progression and prolongs islet graft survival in diabetes–prone mice. Nature Medicine, 1996, 2, 1348-1353.	15.2	249
38	Morphine Activates Opioid Receptors without Causing Their Rapid Internalization. Journal of Biological Chemistry, 1996, 271, 19021-19024.	1.6	459
39	Mu Opioid Receptor-Like Sequences Are Present Throughout Vertebrate Evolution. Journal of Molecular Evolution, 1996, 43, 179-184.	0.8	1
40	Antipeptide Antibodies Against a <i>Torpedo</i> Cysteineâ€String Protein. Journal of Neurochemistry, 1994, 62, 873-880.	2.1	27
41	Ratâ€1 Fibroblasts Engineered with GAD ₆₅ and GAD ₆₇ cDNAs in Retroviral Vectors Produce and Release GABA. Journal of Neurochemistry, 1993, 61, 768-771.	2.1	19
42	Cloning of a delta opioid receptor by functional expression. Science, 1992, 258, 1952-1955.	6.0	1,191
43	Focal Stimulation of the Mossy Fibers Releases Endogenous Dynorphins That BindK1-Opioid Receptors in Guinea Pig Hippocampus. Journal of Neurochemistry, 1991, 57, 333-343.	2.1	67
44	Isolation and Characterization of Opioid Peptides from Rabbit Cerebellum. Journal of Neurochemistry, 1991, 56, 1914-1920.	2.1	2
45	Postmortem Changes in Rat Brain Extracellular Opioid Peptides Revealed by Microdialysis. Journal of Neurochemistry, 1991, 56, 1980-1984.	2.1	14