
Michael J Econs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7631431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nature Genetics, 2000, 26, 345-348.	21.4	1,411
2	Fibroblast Growth Factor 23 in Oncogenic Osteomalacia and X-Linked Hypophosphatemia. New England Journal of Medicine, 2003, 348, 1656-1663.	27.0	853
3	Most Osteomalacia-associated Mesenchymal Tumors Are a Single Histopathologic Entity. American Journal of Surgical Pathology, 2004, 28, 1-30.	3.7	587
4	FGF-23 in fibrous dysplasia of bone and its relationship to renal phosphate wasting. Journal of Clinical Investigation, 2003, 112, 683-692.	8.2	567
5	Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 2014, 514, 92-97.	27.8	548
6	Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney International, 2001, 60, 2079-2086.	5.2	443
7	A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis. Journal of Clinical Investigation, 2007, 117, 2684-2691.	8.2	390
8	Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nature Communications, 2018, 9, 260.	12.8	295
9	The Autosomal Dominant Hypophosphatemic Rickets (ADHR) Gene Is a Secreted Polypeptide Overexpressed by Tumors that Cause Phosphate Wasting. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 497-500.	3.6	292
10	Autosomal Dominant Hypophosphatemic Rickets/Osteomalacia: Clinical Characterization of a Novel Renal Phosphate-Wasting Disorder. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 674-681.	3.6	267
11	Iron Modifies Plasma FGF23 Differently in Autosomal Dominant Hypophosphatemic Rickets and Healthy Humans. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 3541-3549.	3.6	250
12	Diagnosis and Management of Osteopetrosis: Consensus Guidelines From the Osteopetrosis Working Group. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3111-3123.	3.6	170
13	Effects of Iron Isomaltoside vs Ferric Carboxymaltose on Hypophosphatemia in Iron-Deficiency Anemia. JAMA - Journal of the American Medical Association, 2020, 323, 432.	7.4	162
14	FGF23 Concentrations Vary With Disease Status in Autosomal Dominant Hypophosphatemic Rickets. Journal of Bone and Mineral Research, 2007, 22, 520-526.	2.8	149
15	Large meta-analysis of genome-wide association studies identifies five loci for lean body mass. Nature Communications, 2017, 8, 80.	12.8	147
16	Meta-Analysis of Genome-Wide Scans Provides Evidence for Sex- and Site-Specific Regulation of Bone Mass. Journal of Bone and Mineral Research, 2007, 22, 173-183.	2.8	144
17	Treatment of X-Linked Hypophosphatemia with Calcitriol and Phosphate Increases Circulating Fibroblast Growth Factor 23 Concentrations. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 1846-1850.	3.6	138
18	Ablation of the Galnt3 Gene Leads to Low-Circulating Intact Fibroblast Growth Factor 23 (Fgf23) Concentrations and Hyperphosphatemia Despite Increased Fgf23 Expression. Endocrinology, 2009, 150, 2543-2550.	2.8	135

MICHAEL J ECONS

#	Article	IF	CITATIONS
19	Phenotypic Dissection of Bone Mineral Density Reveals Skeletal Site Specificity and Facilitates the Identification of Novel Loci in the Genetic Regulation of Bone Mass Attainment. PLoS Genetics, 2014, 10, e1004423.	3.5	134
20	Autosomal Dominant Osteopetrosis: Clinical Severity and Natural History of 94 Subjects with a Chloride Channel 7 Gene Mutation. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 771-778.	3.6	129
21	Genetics of Osteoporosis. , 2002, 23, 303-326.		115
22	The Autosomal Dominant Hypophosphatemic Rickets (ADHR) Gene Is a Secreted Polypeptide Overexpressed by Tumors that Cause Phosphate Wasting. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 497-500.	3.6	111
23	Genome Screen for Quantitative Trait Loci Underlying Normal Variation in Femoral Structure. Journal of Bone and Mineral Research, 2001, 16, 985-991.	2.8	106
24	Novel GALNT3 Mutations Causing Hyperostosis-Hyperphosphatemia Syndrome Result in Low Intact Fibroblast Growth Factor 23 Concentrations. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 1943-1947.	3.6	76
25	Phenotypic and Genotypic Characterization and Treatment of a Cohort With Familial Tumoral Calcinosis/Hyperostosis-Hyperphosphatemia Syndrome. Journal of Bone and Mineral Research, 2016, 31, 1845-1854.	2.8	67
26	Non-random distribution of mutations in the PHEX gene, and under-detected missense mutations at non-conserved residues. European Journal of Human Genetics, 1999, 7, 615-619.	2.8	60
27	Osteopetroses, emphasizing potential approaches to treatment. Bone, 2017, 102, 50-59.	2.9	53
28	Sibling Pair Linkage and Association Studies between Bone Mineral Density and the Insulin-Like Growth Factor I Gene Locus1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 4467-4471.	3.6	52
29	Confirmation of Linkage to Chromosome 1q for Peak Vertebral Bone Mineral Density in Premenopausal White Women. American Journal of Human Genetics, 2004, 74, 223-228.	6.2	46
30	Osteoblast-Specific Overexpression of Human WNT16 Increases Both Cortical and Trabecular Bone Mass and Structure in Mice. Endocrinology, 2016, 157, 722-736.	2.8	43
31	Disentangling the genetics of lean mass. American Journal of Clinical Nutrition, 2019, 109, 276-287.	4.7	38
32	Generation of the first autosomal dominant osteopetrosis type II (ADO2) disease models. Bone, 2014, 59, 66-75.	2.9	36
33	Serum fibroblast growth factor 23, serum iron and bone mineral density in premenopausal women. Bone, 2016, 86, 98-105.	2.9	36
34	Severe FGF23-based hypophosphataemic osteomalacia due to ferric carboxymaltose administration. BMJ Case Reports, 2018, 2018, bcr-2017-222851.	0.5	36
35	A <i>Phex</i> mutation in a murine model of X-linked hypophosphatemia alters phosphate responsiveness of bone cells. Journal of Bone and Mineral Research, 2012, 27, 453-460.	2.8	34
36	Oral Iron Replacement Normalizes Fibroblast Growth Factor 23 in Ironâ€Deficient Patients With Autosomal Dominant Hypophosphatemic Rickets. Journal of Bone and Mineral Research, 2020, 35, 231-238.	2.8	32

MICHAEL J ECONS

#	Article	IF	CITATIONS
37	Iron and fibroblast growth factor 23 in X-linked hypophosphatemia. Bone, 2014, 60, 87-92.	2.9	29
38	Meta-Analysis of Genomewide Association Studies Reveals Genetic Variants for Hip Bone Geometry. Journal of Bone and Mineral Research, 2019, 34, 1284-1296.	2.8	27
39	Autoimmune hyperphosphatemic tumoral calcinosis in a patient with FGF23 autoantibodies. Journal of Clinical Investigation, 2018, 128, 5368-5373.	8.2	27
40	Chromosomal localization of two human genes involved in phosphate homeostasis: the type IIb sodium-phosphate cotransporter and stanniocalcin-2. Somatic Cell and Molecular Genetics, 1998, 24, 357-362.	0.7	25
41	Interferon Gamma, but not Calcitriol Improves the Osteopetrotic Phenotypes in ADO2 Mice. Journal of Bone and Mineral Research, 2015, 30, 2005-2013.	2.8	24
42	A Mutation in the Dmp1 Gene Alters Phosphate Responsiveness in Mice. Endocrinology, 2017, 158, 470-476.	2.8	21
43	Novel PHEX gene locusâ€specific database: Comprehensive characterization of vast number of variants associated with Xâ€linked hypophosphatemia (XLH). Human Mutation, 2022, 43, 143-157.	2.5	18
44	Hypophosphatemic rickets. , 2001, 2, 165-173.		17
45	Dosage Effect of a Phex Mutation in a Murine Model of X-Linked Hypophosphatemia. Calcified Tissue International, 2013, 93, 155-162.	3.1	17
46	Conventional Therapy in Adults With XLH Improves Dental Manifestations, But Not Enthesopathy. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 3622-3624.	3.6	16
47	Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes. Calcified Tissue International, 2017, 100, 361-373.	3.1	16
48	Interferon Gamma-1b Does Not Increase Markers of Bone Resorption in Autosomal Dominant Osteopetrosis. Journal of Bone and Mineral Research, 2019, 34, 1436-1445.	2.8	16
49	Osteopathia Striata with Cranial Sclerosis. Journal of Bone and Mineral Research, 1999, 14, 152-153.	2.8	14
50	Polymorphisms in the bone morphogenetic protein 2 (BMP2) gene do not affect bone mineral density in white men or women. Osteoporosis International, 2006, 17, 587-592.	3.1	13
51	Intronic deletions in the SLC34A3 gene: A cautionary tale for mutation analysis of hereditary hypophosphatemic rickets with hypercalciuria. Bone, 2014, 59, 53-56.	2.9	13
52	Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone, 2015, 81, 417-426.	2.9	11
53	Phenotypic severity of autosomal dominant osteopetrosis type II (ADO2) mice on different genetic backgrounds recapitulates the features of human disease. Bone, 2017, 94, 34-41.	2.9	11
54	SIBLING family genes and bone mineral density: Association and allele-specific expression in humans. Bone, 2014, 64, 166-172.	2.9	10

MICHAEL J ECONS

#	Article	IF	CITATIONS
55	Genetic diseases resulting from disordered FGF23/klotho biology. Bone, 2017, 100, 56-61.	2.9	10
56	Sibling Pair Linkage and Association Studies between Peak Bone Mineral Density and the Gene Locus for the Osteoclast-Specific Subunit (OC116) of the Vacuolar Proton Pump on Chromosome 11p12-13. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 3819-3824.	3.6	10
57	Bone mineral density and laboratory evaluation of a type II autosomal dominant osteopetrosis carrier. , 1999, 85, 9-12.		7
58	Chapter 23. Fibroblast Growth Factor-23. , 0, , 112-116.		6
59	Radiographic imaging, densitometry and disease severity in Autosomal dominant osteopetrosis type 2. Skeletal Radiology, 2021, 50, 903-913.	2.0	6
60	CLCN7 polymorphisms and bone mineral density in healthy premenopausal white women and in white men. Bone, 2008, 43, 995-998.	2.9	5
61	Localization of PiUS, a stimulator of cellular phosphate uptake to human chromosome 3p21.3. Somatic Cell and Molecular Genetics, 1998, 24, 71-74.	0.7	3
62	Genome-wide association study of serum iron phenotypes in premenopausal women of European descent. Blood Cells, Molecules, and Diseases, 2016, 57, 50-53.	1.4	3
63	The Case Ectopic calcifications in a child. Kidney International, 2015, 87, 1079-1081.	5.2	2
64	OR13-3 Effects of Iron Isomaltoside versus Ferric Carboxymaltose on Hormonal Control of Phosphate Homeostasis: The PHOSPHARE-IDA04/05 Randomized Controlled Trials. Journal of the Endocrine Society, 2019, 3, .	0.2	2
65	Case 18-2022: A 29-Year-Old Woman with Recurrent Fractures. New England Journal of Medicine, 2022, 386, 2316-2326.	27.0	2
66	Chloroquine increases osteoclast activity in vitro but does not improve the osteopetrotic bone phenotype of ADO2 mice. Bone, 2021, 153, 116160.	2.9	1
67	Unusual Cortical Phenotype After Hematopoietic Stem Cell Transplantation in a Patient With Osteopetrosis. JBMR Plus, 2022, 6, .	2.7	1