
Marina E Quadros

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7631349/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contrasting Chemical Complexity and the Reactive Organic Carbon Budget of Indoor and Outdoor Air. Environmental Science & Technology, 2022, 56, 109-118.	10.0	13
2	Assessment of PM _{2.5} concentrations, transport, and mitigation in indoor environments using low-cost air quality monitors and a portable air cleaner. Environmental Science Atmospheres, 2022, 2, 647-658.	2.4	4
3	The molecular impact of life in an indoor environment. Science Advances, 2022, 8, .	10.3	3
4	Characterization of aerosol plumes from singing and playing wind instruments associated with the risk of airborne virus transmission. Indoor Air, 2022, 32, .	4.3	8
5	Realâ€ŧime organic aerosol chemical speciation in the indoor environment using extractive electrospray ionization mass spectrometry. Indoor Air, 2021, 31, 141-155.	4.3	29
6	Influence of Powder Type on Aerosol Emissions in Powder-Binder Jetting with Emphasis on Lunar Regolith for In Situ Space Applications. ACS ES&T Engineering, 2021, 1, 183-191.	7.6	5
7	Indoor emissions of total and fluorescent supermicron particles during HOMEChem. Indoor Air, 2021, 31, 88-98.	4.3	20
8	Indoor black carbon and brown carbon concentrations from cooking and outdoor penetration: insights from the HOMEChem study. Environmental Sciences: Processes and Impacts, 2021, 23, 1476-1487.	3.5	10
9	Quantification of cooking organic aerosol in the indoor environment using aerodyne aerosol mass spectrometers. Aerosol Science and Technology, 2021, 55, 1099-1114.	3.1	20
10	Volatile organic compound emissions during HOMEChem. Indoor Air, 2021, 31, 2099-2117.	4.3	48
11	Measurements and Simulations of Aerosol Released while Singing and Playing Wind Instruments. ACS Environmental Au, 2021, 1, 71-84.	7.0	24
12	Air pollutant emissions from multi jet fusion, material-jetting, and digital light synthesis commercial 3D printers in a service bureau. Building and Environment, 2021, 202, 108008.	6.9	7
13	Fates and spatial variations of accumulation mode particles in a multi-zone indoor environment during the HOMEChem campaign. Environmental Sciences: Processes and Impacts, 2021, 23, 1029-1039.	3.5	20
14	Aerosol dynamics modeling of sub-500 nm particles during the HOMEChem study. Environmental Sciences: Processes and Impacts, 2021, 23, 1706-1717.	3.5	5
15	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
16	Cooking, Bleach Cleaning, and Air Conditioning Strongly Impact Levels of HONO in a House. Environmental Science & Technology, 2020, 54, 13488-13497.	10.0	27
17	Glass surface evolution following gas adsorption and particle deposition from indoor cooking events as probed by microspectroscopic analysis. Environmental Sciences: Processes and Impacts, 2020, 22, 1698-1709.	3.5	18
18	Indoor Surface Chemistry: Developing a Molecular Picture of Reactions on Indoor Interfaces. CheM, 2020, 6, 3203-3218.	11.7	70

MARINA E QUADROS

#	Article	IF	CITATIONS
19	Surface Emissions Modulate Indoor SVOC Concentrations through Volatility-Dependent Partitioning. Environmental Science & Technology, 2020, 54, 6751-6760.	10.0	43
20	Indoor Particulate Matter during HOMEChem: Concentrations, Size Distributions, and Exposures. Environmental Science & Technology, 2020, 54, 7107-7116.	10.0	127
21	Surface reservoirs dominate dynamic gas-surface partitioning of many indoor air constituents. Science Advances, 2020, 6, eaay8973.	10.3	105
22	Multiphase Chemistry Controls Inorganic Chlorinated and Nitrogenated Compounds in Indoor Air during Bleach Cleaning. Environmental Science & Technology, 2020, 54, 1730-1739.	10.0	87
23	Predicting Photovoltaic Soiling From Air Quality Measurements. IEEE Journal of Photovoltaics, 2020, 10, 1142-1147.	2.5	16
24	Overview of HOMEChem: House Observations of Microbial and Environmental Chemistry. Environmental Sciences: Processes and Impacts, 2019, 21, 1280-1300.	3.5	140
25	Indoor air: sources, chemistry and health effects. Environmental Sciences: Processes and Impacts, 2019, 21, 1227-1228.	3.5	9
26	Single-Cell Analysis Reveals that Chronic Silver Nanoparticle Exposure Induces Cell Division Defects in Human Epithelial Cells. International Journal of Environmental Research and Public Health, 2019, 16, 2061.	2.6	6
27	Enhanced Photovoltaic Soiling In An Urban Environment. , 2019, , .		6
28	Nano-enabled personal care products: Current developments in consumer safety. NanoImpact, 2018, 11, 170-179.	4.5	28
29	Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine. Environmental Science & Technology, 2017, 51, 1973-1980.	10.0	66
30	Life Cycle Assessment and Release Studies for 15 Nanosilver-Enabled Consumer Products: Investigating Hotspots and Patterns of Contribution. Environmental Science & Technology, 2017, 51, 7148-7158.	10.0	75
31	Aerosol Emissions from Fuse-Deposition Modeling 3D Printers in a Chamber and in Real Indoor Environments. Environmental Science & amp; Technology, 2017, 51, 9516-9523.	10.0	77
32	Nanoparticles in road dust from impervious urban surfaces: distribution, identification, and environmental implications. Environmental Science: Nano, 2016, 3, 534-544.	4.3	68
33	Outdoor urban nanomaterials: The emergence of a new, integrated, and critical field of study. Science of the Total Environment, 2016, 557-558, 740-753.	8.0	90
34	Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology, 2015, 6, 1769-1780.	2.8	1,485
35	Public's Understanding, Perceptions, and Acceptance of Nanotechnology through the Lens of Consumer Products. , 2015, , 151-171.		0
36	Characterization of silver nanoparticles in selected consumer products and its relevance for predicting children's potential exposures. International Journal of Hygiene and Environmental Health, 2015, 218, 345-357.	4.3	113

MARINA E QUADROS

#	Article	IF	CITATIONS
37	Exposure to airborne engineered nanoparticles in the indoor environment. Atmospheric Environment, 2015, 106, 503-509.	4.1	25
38	Sustainable Nanotechnology. , 2014, , 395-424.		2
39	Sources and transport of black carbon at the California–Mexico border. Atmospheric Environment, 2013, 70, 490-499.	4.1	17
40	Release of Silver from Nanotechnology-Based Consumer Products for Children. Environmental Science & Technology, 2013, 47, 8894-8901.	10.0	184
41	Silver Nanoparticles and Total Aerosols Emitted by Nanotechnology-Related Consumer Spray Products. Environmental Science & Technology, 2011, 45, 10713-10719.	10.0	184
42	Odor assessment tools and odor emissions in industrial processes. Acta Scientiarum - Technology, 2010, 32, .	0.4	2
43	Environmental and Human Health Risks of Aerosolized Silver Nanoparticles. Journal of the Air and Waste Management Association, 2010, 60, 770-781.	1.9	187
44	Efficiency Evaluation of Gas Treatment Equipments in Terms of Odor Removal Using Dynamic Olfactometry. Water Practice and Technology, 2009, 4, .	2.0	0