Nita H Salzman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7631153/publications.pdf

Version: 2024-02-01

76326 79698 9,836 75 40 citations h-index papers

g-index 76 76 76 12380 docs citations times ranked citing authors all docs

73

#	Article	IF	CITATIONS
1	Probiotic normalization of systemic inflammation in siblings of type 1 diabetes patients: an open-label pilot study. Scientific Reports, 2022, 12, 3306.	3.3	14
2	Lactobacillus plantarum 299 ν probiotic supplementation in men with stable coronary artery disease suppresses systemic inflammation. Scientific Reports, 2021, 11, 3972.	3.3	11
3	Pediatric nonalcoholic fatty liver disease and the microbiome: Mechanisms contributing to pathogenesis and progression. Current Opinion in Endocrine and Metabolic Research, 2021, 19, 22-29.	1.4	2
4	Skin inflammation activates intestinal stromal fibroblasts and promotes colitis. Journal of Clinical Investigation, 2021, 131, .	8.2	12
5	Microbiome Signatures Associated With Steatohepatitis and Moderate to Severe Fibrosis in Children With Nonalcoholic Fatty Liver Disease. Gastroenterology, 2019, 157, 1109-1122.	1.3	184
6	Challenges in IBD Research: Preclinical Human IBD Mechanisms. Inflammatory Bowel Diseases, 2019, 25, S5-S12.	1.9	44
7	Fecal Microbial Transplant Capsules Are Safe in Hepatic Encephalopathy: A Phase 1, Randomized, Placeboâ€Controlled Trial. Hepatology, 2019, 70, 1690-1703.	7.3	196
8	Longitudinal changes in the gut microbiome of infants on total parenteral nutrition. Pediatric Research, 2019, 86, 107-114.	2.3	43
9	Sortase-Dependent Proteins Promote Gastrointestinal Colonization by Enterococci. Infection and Immunity, 2019, 87, .	2.2	13
10	Colonization of the mammalian intestinal tract by enterococci. Current Opinion in Microbiology, 2019, 47, 26-31.	5.1	24
11	A screen of Crohn's disease-associated microbial metabolites identifies ascorbate as a novel metabolic inhibitor of activated human T cells. Mucosal Immunology, 2019, 12, 457-467.	6.0	44
12	Microbial functional change is linked with clinical outcomes after capsular fecal transplant in cirrhosis. JCI Insight, 2019, 4, .	5.0	49
13	A model of TH17-associated ileal hyperplasia that requires both IL-17A and IFN \hat{I}^3 to generate self-tolerance and prevent colitis. Mucosal Immunology, 2018, 11, 1127-1137.	6.0	3
14	Modulators of Enterococcus faecalis Cell Envelope Integrity and Antimicrobial Resistance Influence Stable Colonization of the Mammalian Gastrointestinal Tract. Infection and Immunity, 2018, 86, .	2.2	25
15	Ceftriaxone Administration Disrupts Intestinal Homeostasis, Mediating Noninflammatory Proliferation and Dissemination of Commensal Enterococci. Infection and Immunity, 2018, 86, .	2.2	31
16	Intestinal Microbiota Disruption Reduces Regulatory T Cells and Increases Respiratory Viral Infection Mortality Through Increased IFNÎ ³ Production. Frontiers in Immunology, 2018, 9, 1587.	4.8	52
17	Exploring bioactive peptides from bacterial secretomes using Pep <scp>SAVI</scp> â€ <scp>MS</scp> : identification and characterization of Bacâ€21 from <i>Enterococcus faecalis </i> <scp>pPD</scp> 1. Microbial Biotechnology, 2018, 11, 943-951.	4.2	7
18	<i>Lactobacillus plantarum</i> 299v Supplementation Improves Vascular Endothelial Function and Reduces Inflammatory Biomarkers in Men With Stable Coronary Artery Disease. Circulation Research, 2018, 123, 1091-1102.	4.5	127

#	Article	IF	CITATIONS
19	Modulation of the diet and gastrointestinal microbiota normalizes systemic inflammation and \hat{l}^2 -cell chemokine expression associated with autoimmune diabetes susceptibility. PLoS ONE, 2018, 13, e0190351.	2.5	21
20	Intestinal alkaline phosphatase deficiency leads to dysbiosis and bacterial translocation in the newborn intestine. Journal of Surgical Research, 2017, 218, 35-42.	1.6	20
21	Continued Alcohol Misuse in Human Cirrhosis is Associated with an Impaired Gut–Liver Axis. Alcoholism: Clinical and Experimental Research, 2017, 41, 1857-1865.	2.4	86
22	Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats. Nutrition and Cancer, 2017, 69, 943-951.	2.0	82
23	Paneth cell defects in Crohn's disease patients promote dysbiosis. JCI Insight, 2016, 1, e86907.	5.0	91
24	Harnessing bacteriocin biology as targeted therapy in the GI tract. Gut Microbes, 2016, 7, 512-517.	9.8	15
25	Intact Regulatory Tâ€Cell Function but Defective Generation of IL–17Aâ€Producing CD4 ⁺ T Cells in XIAP Deficiency. Journal of Pediatric Gastroenterology and Nutrition, 2016, 63, 218-225.	1.8	0
26	O-011â€fPaneth Cell Phenotypes Define a Subtype of Pediatric Crohn's Disease Through Alterations in Host-Microbial Interactions. Inflammatory Bowel Diseases, 2016, 22, S4.	1.9	5
27	Alternatively Activated Macrophages Boost Induced Regulatory T and Th17 Cell Responses during Immunotherapy for Colitis. Journal of Immunology, 2016, 196, 3305-3317.	0.8	39
28	Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats. PLoS ONE, 2016, 11, e0160840.	2.5	101
29	Selection of models for the analysis of risk-factor trees: leveraging biological knowledge to mine large sets of risk factors with application to microbiome data. Bioinformatics, 2015, 31, 1607-1613.	4.1	12
30	Increased susceptibility to otitis media in a <i>Splunc1</i> deficient mouse model. DMM Disease Models and Mechanisms, 2015, 8, 501-508.	2.4	16
31	Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature, 2015, 526, 719-722.	27.8	332
32	Gut Microbial Dysbiosis Due toHelicobacterDrives an Increase in Marginal Zone B Cells in the Absence of IL-10 Signaling in Macrophages. Journal of Immunology, 2015, 195, 3071-3085.	0.8	21
33	Detection of Antimicrobial (Poly)Peptides with Acid Urea Polyacrylamide Gel Electrophoresis Followed by Western Immunoblot. Methods in Molecular Biology, 2015, 1225, 105-115.	0.9	3
34	The role of the microbiome in immune cell development. Annals of Allergy, Asthma and Immunology, 2014, 113, 593-598.	1.0	23
35	Calprotectin in Cystic Fibrosis. BMC Pediatrics, 2014, 14, 133.	1.7	37
36	Dysbiosisâ€"A consequence of Paneth cell dysfunction. Seminars in Immunology, 2013, 25, 334-341.	5.6	87

#	Article	IF	CITATIONS
37	Loss of TLR2 Worsens Spontaneous Colitis in MDR1A Deficiency through Commensally Induced Pyroptosis. Journal of Immunology, 2013, 190, 5676-5688.	0.8	49
38	Chronic Follicular Bronchiolitis Requires Antigen-Specific Regulatory T Cell Control To Prevent Fatal Disease Progression. Journal of Immunology, 2013, 191, 5460-5476.	0.8	4
39	Expansion of Paneth Cell Population in Response to Enteric Salmonella enterica Serovar Typhimurium Infection. Infection and Immunity, 2012, 80, 266-275.	2.2	58
40	A Novel IL-10–Independent Regulatory Role for B Cells in Suppressing Autoimmunity by Maintenance of Regulatory T Cells via GITR Ligand. Journal of Immunology, 2012, 188, 3188-3198.	0.8	239
41	IL-10 Produced by Induced Regulatory T Cells (iTregs) Controls Colitis and Pathogenic Ex-iTregs during Immunotherapy. Journal of Immunology, 2012, 189, 5638-5648.	0.8	72
42	Alternative Luminal Activation Mechanisms for Paneth Cell α-Defensins. Journal of Biological Chemistry, 2012, 287, 11205-11212.	3.4	34
43	Loss of TLR2 Worsens Spontaneous Colitis in MDR1A Deficiency Through Commensal-Induced Pyroptosis. Inflammatory Bowel Diseases, 2012, 18, S91.	1.9	0
44	Human \hat{l}_{\pm} -Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets. Science, 2012, 337, 477-481.	12.6	337
45	Intestinal microbiota determine severity of myocardial infarction in rats. FASEB Journal, 2012, 26, 1727-1735.	0.5	251
46	Intestinal Microbiota as Novel Biomarkers of Prior Radiation Exposure. Radiation Research, 2012, 177, 573.	1.5	61
47	MprA and DosR Coregulate a Mycobacterium tuberculosis Virulence Operon Encoding <i>Rv1813c</i> and <i>Rv1812c</i> . Infection and Immunity, 2012, 80, 3018-3033.	2.2	37
48	The β ₃ â€integrin ligand of <i>Borrelia burgdorferi</i> is critical for infection of mice but not ticks. Molecular Microbiology, 2012, 85, 1105-1118.	2.5	50
49	Microbiota–immune system interaction: an uneasy alliance. Current Opinion in Microbiology, 2011, 14, 99-105.	5.1	89
50	Targeted intestinal epithelial deletion of the chemokine receptor CXCR4 reveals important roles for extracellular-regulated kinase-1/2 in restitution. Laboratory Investigation, 2011, 91, 1040-1055.	3.7	28
51	Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nature Reviews Microbiology, 2011, 9, 356-368.	28.6	932
52	The potter's wheel: the host's role in sculpting its microbiota. Cellular and Molecular Life Sciences, 2011, 68, 3675-3685.	5.4	110
53	How bugs and men live in harmony. Role of defensins in gut microbial composition and Th17 development. Immunology Letters, 2011, 138, 25-27.	2.5	4
54	A Requisite Role for Induced Regulatory T Cells in Tolerance Based on Expanding Antigen Receptor Diversity. Immunity, 2011, 35, 109-122.	14.3	389

#	Article	IF	Citations
55	Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunology, 2010, 11, 76-82.	14.5	1,013
56	Paneth cell defensins and the regulation of the microbiome. Gut Microbes, 2010, 1, 401-406.	9.8	112
57	Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14739-14744.	7.1	148
58	Postâ€secretory activation of Paneth cell αâ€defensins in the cecal and colonic lumen of matrix metalloproteinaseâ€7â€null mice. FASEB Journal, 2010, 24, 952.7.	0.5	0
59	Prolonged Impact of Antibiotics on Intestinal Microbial Ecology and Susceptibility to Enteric <i>Salmonella</i> Infection. Infection and Immunity, 2009, 77, 2741-2753.	2.2	249
60	A Central Role for Induced Regulatory T Cells in Tolerance Induction in Experimental Colitis. Journal of Immunology, 2009, 182, 3461-3468.	0.8	207
61	A Randomized Placeboâ€controlled Comparison of 2 Prebiotic/Probiotic Combinations in Preterm Infants: Impact on Weight Gain, Intestinal Microbiota, and Fecal Shortâ€chain Fatty Acids. Journal of Pediatric Gastroenterology and Nutrition, 2009, 48, 216-225.	1.8	145
62	Defensins Versus Bacteria: Not Just Antibiotics Anymore. Gastroenterology, 2008, 134, 2174-2177.	1.3	6
63	Enteric Salmonellosis Disrupts the Microbial Ecology of the Murine Gastrointestinal Tract. Infection and Immunity, 2008, 76, 907-915.	2.2	374
64	A Francisella tularensis Schu S4 Purine Auxotroph Is Highly Attenuated in Mice but Offers Limited Protection against Homologous Intranasal Challenge. PLoS ONE, 2008, 3, e2487.	2.5	75
65	Negative Interactions with the Microbiota: IBD. Advances in Experimental Medicine and Biology, 2008, 635, 67-78.	1.6	29
66	Prolonged Colonization of Mice by <i>Vibrio cholerae</i> El Tor O1 Depends on Accessory Toxins. Infection and Immunity, 2007, 75, 5043-5051.	2.2	77
67	Paneth cells, defensins, and the commensal microbiota: A hypothesis on intimate interplay at the intestinal mucosa. Seminars in Immunology, 2007, 19, 70-83.	5.6	346
68	Reduced Paneth cell î±-defensins in ileal Crohn's disease. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18129-18134.	7.1	954
69	Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin. Nature, 2003, 422, 522-526.	27.8	723
70	Enteric Salmonella Infection Inhibits Paneth Cell Antimicrobial Peptide Expression. Infection and Immunity, 2003, 71, 1109-1115.	2.2	135
71	Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria b bThe GenBank accession numbers for the clone sequences reported in this paper can be found in Table 1 T1; the accession number for isolate MIB-CB3 is AJ418059 Microbiology (United) Tj ETC	Qq ^{1.8} 0.78	84 31 4 rgBT /
72	Anatomic and functional characteristics of the rat ileal pouch. American Journal of Surgery, 2002, 183, 464-470.	1.8	7

#	Article	IF	CITATIONS
73	Enteric Defensin Expression in Necrotizing Enterocolitis. Pediatric Research, 1998, 44, 20-26.	2.3	126
74	Human Enteric Defensins. Journal of Biological Chemistry, 1996, 271, 4038-4045.	3.4	272
75	Annual Chemical Congress: polymer analysis. Analytical Proceedings, 1983, 20, 569.	0.4	1