Thorsten Hoffmann

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7630965/thorsten-hoffmann-publications-by-year.pdf

Version: 2024-04-17

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

13,538 50 114 177 h-index g-index citations papers 6.8 5.85 15,458 191 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
177	Towards comprehensive non-target screening using heart-cut two-dimensional liquid chromatography for the analysis of organic atmospheric tracers in ice cores. <i>Journal of Chromatography A</i> , 2021 , 1661, 462706	4.5	
176	Bromine speciation in volcanic plumes: new in situ derivatization LC-MS method for the determination of gaseous hydrogen bromide by gas diffusion denuder sampling. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 6395-6406	4	
175	Measurement report: PM_{2.5}-bound nitrated aromatic compounds in Xi'an, Northwest China Beasonal variations and contributions to optical properties of brown carbon. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 3685-3697	6.8	2
174	Lignin oxidation products in soil, dripwater and speleothems from four different sites in New Zealand. <i>Biogeosciences</i> , 2021 , 18, 2289-2300	4.6	1
173	The maximum carbonyl ratio (MCR) as a new index for the structural classification of secondary organic aerosol components. <i>Rapid Communications in Mass Spectrometry</i> , 2021 , 35, e9113	2.2	2
172	A multi-purpose, multi-rotor drone system for long-range and high-altitude volcanic gas plume measurements. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 4255-4277	4	3
171	Urban organic aerosol composition in eastern China differs from north to south: molecular insight from a liquid chromatographythass spectrometry (Orbitrap) study. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 9089-9104	6.8	5
170	High Pressure Inside Nanometer-Sized Particles Influences the Rate and Products of Chemical Reactions. <i>Environmental Science & Environmental Science </i>	10.3	4
169	Halogen activation in the plume of Masaya volcano: field observations and box model investigations. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 3371-3393	6.8	6
168	Aqueous-phase reactive species formed by fine particulate matter from remote forests and polluted urban air. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 10439-10455	6.8	3
167	Measurement report of the change of PM composition during the COVID-19 lockdown in urban Xi'an: Enhanced secondary formation and oxidation. <i>Science of the Total Environment</i> , 2021 , 791, 148126	5 ^{10.2}	3
166	Concentrations, optical properties and sources of humic-like substances (HULIS) in fine particulate matter in Xi'an, Northwest China. <i>Science of the Total Environment</i> , 2021 , 789, 147902	10.2	3
165	Characterization of the light-absorbing properties, chromophore composition and sources of brown carbon aerosol in Xi'an, northwestern China. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 5129-5	f48 144	25
164	Charged Tags for the Identification of Oxidative Drug Metabolites Based on Electrochemistry and Mass Spectrometry. <i>ChemistryOpen</i> , 2020 , 9, 568-572	2.3	2
163	Water-Insoluble Organics Dominate Brown Carbon in Wintertime Urban Aerosol of China: Chemical Characteristics and Optical Properties. <i>Environmental Science & Environmental &</i>	10.3	22
162	Shipborne measurements of Antarctic submicron organic aerosols: an NMR perspective linking multiple sources and bioregions. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 4193-4207	6.8	13
161	Effects of NH and alkaline metals on the formation of particulate sulfate and nitrate in wintertime Beijing. <i>Science of the Total Environment</i> , 2020 , 717, 137190	10.2	10

(2018-2020)

160	Application of time-of-flight aerosol mass spectrometry for the real-time measurement of particle-phase organic peroxides: an online redox derivatization erosol mass spectrometer (ORD-AMS). Atmospheric Measurement Techniques, 2020, 13, 5725-5738	4	1
159	Contrasting sources and processes of particulate species in haze days with low and high relative humidity in wintertime Beijing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 9101-9114	6.8	17
158	Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles. <i>Atmospheric Measurement Techniques</i> , 2020 , 13, 5551-5567	4	3
157	Short-term e-cigarette vapour exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). <i>European Heart Journal</i> , 2020 , 41, 2472-2483	9.5	74
156	One-year characterization of organic aerosol markers in urban Beijing: Seasonal variation and spatiotemporal comparison. <i>Science of the Total Environment</i> , 2020 , 743, 140689	10.2	4
155	Summertime and wintertime atmospheric processes of secondary aerosol in Beijing. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 3793-3807	6.8	26
154	Determination of n-alkanes, polycyclic aromatic hydrocarbons and hopanes in atmospheric aerosol: evaluation and comparison of thermal desorption GC-MS and solvent extraction GC-MS approaches. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 4779-4789	4	9
153	Radical Formation by Fine Particulate Matter Associated with Highly Oxygenated Molecules. <i>Environmental Science & Environmental Science & Environment</i>	10.3	30
152	Molecular Characterization and Source Identification of Atmospheric Particulate Organosulfates Using Ultrahigh Resolution Mass Spectrometry. <i>Environmental Science & Environmental Science & Environm</i>	2 ⁻⁶² 02	20
151	Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2209-2232	6.8	9
150	Lignin oxidation products as a potential proxy for vegetation and environmental changes in speleothems and cave drip water he first record from the Herbstlabyrinth, central Germany. Climate of the Past, 2019, 15, 1025-1037	3.9	4
149	Anodic Degradation of Lignin at Active Transition Metal-based Alloys and Performance-enhanced Anodes. <i>ChemElectroChem</i> , 2019 , 6, 155-161	4.3	30
148	Plant diversity enhances the natural attenuation of polycyclic aromatic compounds (PAHs and oxygenated PAHs) in grassland soils. <i>Soil Biology and Biochemistry</i> , 2019 , 129, 60-70	7.5	30
147	Direct measurement of NO₃ radical reactivity in a boreal forest. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 3799-3815	6.8	31
146	Emission of nitrous acid from soil and biological soil crusts represents an important source of HONO in the remote atmosphere in Cyprus. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 799-813	6.8	36
145	Ultrahigh-Resolution Mass Spectrometry in Real Time: Atmospheric Pressure Chemical Ionization Orbitrap Mass Spectrometry of Atmospheric Organic Aerosol. <i>Analytical Chemistry</i> , 2018 , 90, 8816-882	3 ^{7.8}	29
144	Quantification of lignin oxidation products as vegetation biomarkers in speleothems and cave drip water. <i>Biogeosciences</i> , 2018 , 15, 5831-5845	4.6	2
143	Advances in Bromine Speciation in Volcanic Plumes. Frontiers in Earth Science, 2018, 6,	3.5	15

142	Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air 2018 ,		1
141	Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM_{2.5} from Xi'an, northwestern China. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 3447-3456	4	32
140	Implementation of electrochemical, optical and denuder-based sensors and sampling techniques on UAV for volcanic gas measurements: examples from Masaya, Turrialba and stromboli volcanoes. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 2441-2457	4	32
139	Synthesis and characterisation of peroxypinic acids as proxies for highly oxygenated molecules (HOMs) in secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 10973-10983	6.8	8
138	Black and brown carbon over central Amazonia: long-term aerosol measurements at the ATTO site. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 12817-12843	6.8	35
137	Brown Carbon Aerosol in Urban Xi'an, Northwest China: The Composition and Light Absorption Properties. <i>Environmental Science & Environmental Science </i>	10.3	86
136	UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing). <i>Atmospheric Environment</i> , 2018 , 189, 22-29	5.3	38
135	Fuel For Lamps: Organic Residues Preserved in Iron Age Lamps Excavated at the Site of Sahab in Jordan. <i>Archaeometry</i> , 2017 , 59, 934-948	1.6	5
134	Abiotic versus biotic iron mineral transformation studied by a miniaturized backscattering MBsbauer spectrometer (MIMOS II), X-ray diffraction and Raman spectroscopy. <i>Icarus</i> , 2017 , 296, 49-58	3.8	10
133	Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds. <i>Faraday Discussions</i> , 2017 , 200, 59-74	3.6	24
132	Development and application of a sampling method for the determination of reactive halogen species in volcanic gas emissions. <i>Analytical and Bioanalytical Chemistry</i> , 2017 , 409, 5975-5985	4.4	10
131	Severe Pollution in China Amplified by Atmospheric Moisture. <i>Scientific Reports</i> , 2017 , 7, 15760	4.9	122
130	Light-induced protein nitration and degradation with HONO emission. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 11819-11833	6.8	15
129	Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the F-BEACh[2014 field study. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 1453-1469	6.8	29
128	Metaproteomic analysis of atmospheric aerosol samples. <i>Analytical and Bioanalytical Chemistry</i> , 2016 , 408, 6337-48	4.4	13
127	Historic records of organic compounds from a high Alpine glacier: influences of biomass burning, anthropogenic emissions, and dust transport. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1029-1043	6.8	22
126	Uptake of gaseous formaldehyde by soil surfaces: a combination of adsorption/desorption equilibrium and chemical reactions. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 10299-10311	6.8	17
125	Daytime formation of nitrous acid at a coastal remote site in Cyprus indicating a common ground source of atmospheric HONO and NO. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 14475-14493	6.8	45

12	24	Secondary brown carbon formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic effects. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 18353-64	3.6	35	
12	2 3	A detailed MSn study for the molecular identification of a dimer formed from oxidation of pinene. <i>Atmospheric Environment</i> , 2016 , 130, 120-126	5.3	12	
12	22	Real-time detection of highly oxidized organosulfates and BSOA marker compounds during the FBEACh 2014 field study 2016 ,		1	
12	21	Critical assessment of ionization patterns and applications of ambient desorption/ionization mass spectrometry using FAPA-MS. <i>Journal of Mass Spectrometry</i> , 2016 , 51, 141-9	2.2	12	
12	20	Azaarenes in fine particulate matter from the atmosphere of a Chinese megacity. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 16025-36	5.1	14	
11	19	Aerosol Chemistry Resolved by Mass Spectrometry: Insights into Particle Growth after Ambient New Particle Formation. <i>Environmental Science & Environmental Science & Environm</i>	10.3	16	
11	ι8	Aerosol Chemistry Resolved by Mass Spectrometry: Linking Field Measurements of Cloud Condensation Nuclei Activity to Organic Aerosol Composition. <i>Environmental Science & Environmental Science & Technology</i> , 2016 , 50, 10823-10832	10.3	14	
11	17	Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. <i>Atmospheric Research</i> , 2016 , 182, 346-376	5.4	406	
11	16	Real-Time Analysis of Ambient Organic Aerosols Using Aerosol Flowing Atmospheric-Pressure Afterglow Mass Spectrometry (AeroFAPA-MS). <i>Environmental Science & Environmental Sc</i>	-8 ^{0.3}	36	
11	15	Estimating the contribution of organic acids to northern hemispheric continental organic aerosol. <i>Geophysical Research Letters</i> , 2015 , 42, 6084-6090	4.9	36	
11	٤4	A comparison of HONO budgets for two measurement heights at a field station within the boreal forest in Finland. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 799-813	6.8	41	
11	13	The Amazon Tall Tower Observatory (ATTO): overview of pilot measurements on ecosystem ecology, meteorology, trace gases, and aerosols. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 10723-10	9778 1776	155	
11	12	The molecular identification of organic compounds in the atmosphere: state of the art and challenges. <i>Chemical Reviews</i> , 2015 , 115, 3919-83	68.1	300	
11	[1	A new sensitive method for the quantification of glyoxal and methylglyoxal in snow and ice by stir bar sorptive extraction and liquid desorption-HPLC-ESI-MS. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 2525-32	4.4	12	
11	(0	Quantification of low molecular weight fatty acids in cave drip water and speleothems using HPLC-ESI-IT/MS development and validation of a selective method. <i>Analytical and Bioanalytical Chemistry</i> , 2014 , 406, 3167-77	4.4	16	
10	09	Suppression of new particle formation from monoterpene oxidation by NO_x. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 2789-2804	6.8	51	
10	08	Analysis of organic aerosols using a micro-orifice volatilization impactor coupled to an atmospheric-pressure chemical ionization mass spectrometer. <i>European Journal of Mass Spectrometry</i> , 2014 , 20, 31-41	1.1	6	
10	97	Emission of iodine-containing volatiles by selected microalgae species. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 13327-13335	6.8	5	

106	Terpenoid composition and origin of amber from the Cape York Peninsula, Australia. <i>Australian Journal of Earth Sciences</i> , 2014 , 61, 979-985	1.4	13
105	Determination of alkylamines in atmospheric aerosol particles: a comparison of gas chromatographyfhass spectrometry and ion chromatography approaches. <i>Atmospheric Measurement Techniques</i> , 2014 , 7, 2027-2035	4	27
104	PMIEDound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. <i>Science of the Total Environment</i> , 2014 , 473-474, 77-87	10.2	227
103	Terpenoid composition and chemotaxonomic aspects of Miocene amber from the Koroglu Mountains, Turkey. <i>Journal of Analytical and Applied Pyrolysis</i> , 2014 , 105, 100-107	6	17
102	HONO emissions from soil bacteria as a major source of atmospheric reactive nitrogen. <i>Science</i> , 2013 , 341, 1233-5	33.3	207
101	New tracer compounds for secondary organic aerosol formation from Etaryophyllene oxidation. <i>Atmospheric Environment</i> , 2013 , 80, 122-130	5.3	27
100	Effective Henry's law partitioning and the salting constant of glyoxal in aerosols containing sulfate. <i>Environmental Science & Environmental </i>	10.3	91
99	Online atmospheric pressure chemical ionization ion trap mass spectrometry (APCI-IT-MSⁿ) for measuring organic acids in concentrated bulk aerosol la laboratory and field study. <i>Atmospheric Measurement Techniques</i> , 2013 , 6, 431-443	4	36
98	The seaweeds <i>Fucus vesiculosus</i> and <i>Ascophyllum nodosum</i> are significant contributors to coastal iodine emissions. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 5255-	5264	18
97	In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 10933-10950	6.8	22
96	Biogenic and biomass burning organic aerosol in a boreal forest at Hyyti©Finland, during HUMPPA-COPEC 2010. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 12233-12256	6.8	46
95	Application of time-of-flight aerosol mass spectrometry for the online measurement of gaseous molecular iodine. <i>Analytical Chemistry</i> , 2012 , 84, 1439-45	7.8	12
94	Molecular composition and chemotaxonomic aspects of Eocene amber from the Ameki Formation, Nigeria. <i>Organic Geochemistry</i> , 2012 , 51, 55-62	3.1	21
93	Generation of standard gas mixtures of halogenated, aliphatic, and aromatic compounds and prediction of the individual output rates based on molecular formula and boiling point. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 404, 2177-83	4.4	18
92	Application of mass spectrometric techniques for the trace analysis of short-lived iodine-containing volatiles emitted by seaweed. <i>Analytical and Bioanalytical Chemistry</i> , 2012 , 402, 3345-57	4.4	17
91	Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 13503-8	11.5	201
90	Formation of 3-methyl-1,2,3-butanetricarboxylic acid via gas phase oxidation of pinonic acid hamass spectrometric study of SOA aging. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 1483-1496	6.8	162
89	First measurements of reactive Edicarbonyl concentrations on PM _{2.5} aerosol over the Boreal forest in Finland during HUMPPA-COPEC 2010 Bource apportionment and links to aerosol aging. Atmospheric Chemistry and Physics, 2012, 12, 6145-6155	6.8	12

88	Identification and characterization of aging products in the glyoxal/ammonium sulfate system implications for light-absorbing material in atmospheric aerosols. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 6323-6333	6.8	109
87	Summertime total OH reactivity measurements from boreal forest during HUMPPA-COPEC 2010. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 8257-8270	6.8	103
86	Iodine emissions from the sea ice of the Weddell Sea. Atmospheric Chemistry and Physics, 2012, 12, 1127	2 % .812	46 9
85	Iodine containing species in the remote marine boundary layer: A link to oceanic phytoplankton. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	24
84	Atmospheric analytical chemistry. Analytical Chemistry, 2011, 83, 4649-64	7.8	52
83	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) Integrating aerosol research from nano to global scales. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 13061-13143	6.8	231
82	The summertime Boreal forest field measurement intensive (HUMPPA-COPEC-2010): an overview of meteorological and chemical influences. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 10599-10618	6.8	87
81	Volatility of secondary organic aerosol during OH radical induced ageing. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 11055-11067	6.8	60
80	Development and validation of a selective HPLC-ESI-MS/MS method for the quantification of glyoxal and methylglyoxal in atmospheric aerosols (PM2.5). <i>Analytical and Bioanalytical Chemistry</i> , 2011 , 401, 3115-24	4.4	22
79	Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates. <i>Nanoscale</i> , 2011 , 3, 1158-65	7.7	92
78	Phosphorus-containing Polysulfones - A Comparative Study. <i>High Performance Polymers</i> , 2010 , 22, 715-	7 4 .16	7
77	Observations of high concentrations of I2 and IO in coastal air supporting iodine-oxide driven coastal new particle formation. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	27
76	Extensive evaluation of a diffusion denuder technique for the quantification of atmospheric stable and radioactive molecular iodine. <i>Environmental Science & Environmental Sc</i>	10.3	14
75	In situ measurements of molecular iodine in the marine boundary layer: the link to macroalgae and the implications for O₃, IO, OIO and NO_x. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 4823-4833	6.8	46
74	Seasonal cycle and temperature dependence of pinene oxidation products, dicarboxylic acids and nitrophenols in fine and coarse air particulate matter. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 785	9 ⁻⁶ 873	143
73	Thermodynamic properties and cloud droplet activation of a series of oxo-acids. <i>Atmospheric Chemistry and Physics</i> , 2010 , 10, 5873-5890	6.8	29
72	Diffusion technique for the generation of gaseous halogen standards. <i>Journal of Chromatography A</i> , 2010 , 1217, 2065-9	4.5	8
71	Characterization of oligomeric compounds in secondary organic aerosol using liquid chromatography coupled to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2009 , 23, 971-9	2.2	63

70	Identification of organic hydroperoxides and hydroperoxy acids in secondary organic aerosol formed during the ozonolysis of different monoterpenes and sesquiterpenes by on-line analysis using atmospheric pressure chemical ionization ion trap mass spectrometry. <i>Rapid Communications</i>	2.2	50
69	Development of a coupled diffusion denuder system combined with gas chromatography/mass spectrometry for the separation and quantification of molecular iodine and the activated iodine compounds iodine monochloride and hypoiodous acid in the marine atmosphere. <i>Analytical</i>	7.8	40
68	Biomass Burning in Amazonia: Emissions, Long-Range Transport of Smoke and Its Regional and Remote Impacts. <i>Geophysical Monograph Series</i> , 2009 , 183-206	1.1	21
67	Natural Volatile Organic Compound Emissions from Plants and their Roles in Oxidant Balance and Particle Formation. <i>Geophysical Monograph Series</i> , 2009 , 163-181	1.1	16
66	The formation, properties and impact of secondary organic aerosol: current and emerging issues. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 5155-5236	6.8	2861
65	Polar organic marker compounds in PM2.5 aerosol from a mixed forest site in western Germany. <i>Chemosphere</i> , 2008 , 73, 1308-14	8.4	101
64	Combined determination of the chemical composition and of health effects of secondary organic aerosols: the POLYSOA project. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2008 , 21, 145-	5 ² 4 ⁸	74
63	Properties of Segmented Block Copolymers in PEEK/PSU Blends. <i>High Performance Polymers</i> , 2008 , 20, 601-614	1.6	9
62	Unambiguous identification of esters as oligomers in secondary organic aerosol formed from cyclohexene and cyclohexene/pinene ozonolysis. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 1423-143	3 ^{6.8}	94
61	Characterization of the South Atlantic marine boundary layer aerosol using an aerodyne aerosol mass spectrometer. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 4711-4728	6.8	122
60	Iodine speciation in rain, snow and aerosols. Atmospheric Chemistry and Physics, 2008, 8, 6069-6084	6.8	76
59	The role of VOC oxidation products in continental new particle formation. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 2657-2665	6.8	175
58	Characterization of selected organic compound classes in secondary organic aerosol from biogenic VOCs by HPLC/MSn. <i>Analytical and Bioanalytical Chemistry</i> , 2008 , 391, 171-82	4.4	28
57	Reply to Mirror Symmetry Breakinglof the Centrosymmetric CaCO3 Crystals with Amino Acids. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 3683-3686	16.4	3
56	A denuder-impinger system with in situ derivatization followed by gas chromatography-mass spectrometry for the determination of gaseous iodine-containing halogen species. <i>Journal of Chromatography A</i> , 2008 , 1210, 135-41	4.5	10
55	Combined Determination of the Chemical Composition and of Health Effects of Secondary Organic Aerosols: The POLYSOA Project. <i>Journal of Aerosol Medicine and Pulmonary Drug Delivery</i> , 2008 , 080207	08051	9480-10
54	Gel electrophoresis coupled to inductively coupled plasma-mass spectrometry using species-specific isotope dilution for iodide and iodate determination in aerosols. <i>Analytical Chemistry</i> , 2007 , 79, 1714-9	7.8	24
53	Iodine Speciation in Marine Boundary Layer 2007 , 1055-1059		1

52	Chemie von Aerosolen. <i>Chemie in Unserer Zeit</i> , 2007 , 41, 232-246	0.2	5
51	Modification of Polysulfones by Carboxylic Acids. <i>High Performance Polymers</i> , 2007 , 19, 48-61	1.6	2
50	In situ Synthesis of Poly(ethylene terephthalate)/layered Silicate Nanocomposites by Polycondensation. <i>High Performance Polymers</i> , 2007 , 19, 565-580	1.6	11
49	Organic Aerosols 2007 , 342-387		9
48	Capillary-HPLC-ESI-MS/MS method for the determination of acidic products from the oxidation of monoterpenes in atmospheric aerosol samples. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 385, 34-45	4.4	61
47	Characterization of iodine species in the marine aerosol: To understand their roles in particle formation processes. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2006 , 1, 119-129		7
46	Monitoring of chemical reactions during polymer synthesis by real-time attenuated total reflection (ATR) ETIR spectroscopy. <i>Journal of Applied Polymer Science</i> , 2006 , 101, 1374-1380	2.9	15
45	Novel Phosphorus-Containing Poly(ether sulfone)s and Their Blends with an Epoxy Resin: Thermal Decomposition and Fire Retardancy. <i>Macromolecular Chemistry and Physics</i> , 2006 , 207, 1501-1514	2.6	59
44	Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation. <i>Atmospheric Chemistry and Physics</i> , 2006 , 6, 883-895	6.8	122
43	Monitoring of the polycondensation reaction of bisphenol A and 4,4?-dichlorodiphenylsulfone towards polysulfone (PSU) by real-time ATRETIR spectroscopy. <i>European Polymer Journal</i> , 2006 , 42, 2292-2301	5.2	20
42	Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. <i>Polymer</i> , 2006 , 47, 8495-8508	3.9	331
41	Quantification of Coastal New Ultra-Fine Particles Formation from In situ and Chamber Measurements during the BIOFLUX Campaign. <i>Environmental Chemistry</i> , 2005 , 2, 260	3.2	55
40	Electron beam irradiation of molten polysulfone. <i>Polymer Degradation and Stability</i> , 2005 , 90, 379-385	4.7	10
39	Marine aerosols and iodine emissions (Reply). <i>Nature</i> , 2005 , 433, E13-E14	50.4	13
38	Novel Phosphorous-Containing Aromatic Polyethers Synthesis and Characterization. <i>Macromolecular Chemistry and Physics</i> , 2005 , 206, 423-431	2.6	42
37	A new interface to couple thin-layer chromatography with laser desorption/atmospheric pressure chemical ionization mass spectrometry for plate scanning. <i>Rapid Communications in Mass Spectrometry</i> , 2005 , 19, 2789-93	2.2	40
36	Coastal New Particle Formation: A Review of the Current State-Of-The-Art. <i>Environmental Chemistry</i> , 2005 , 2, 245	3.2	143
35	QUANTIFICATION OF AEROSOL NUCLEATION IN THE EUROPEAN BOUNDARY LAYER (QUEST): RESULTS FROM AN INTENSIVE FIELD CAMPAIGN IN BOREAL FOREST. <i>Journal of Aerosol Science</i> , 2004 , 35, S1225-S1226	4.3	1

34	Thin-layer chromatography combined with diode laser desorption/atmospheric pressure chemical ionization mass spectrometry. <i>Rapid Communications in Mass Spectrometry</i> , 2004 , 18, 1803-8	2.2	29
33	A new feedback mechanism linking forests, aerosols, and climate. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 557-562	6.8	286
32	Overview of the field measurement campaign in Hyyti DAugust 2001 in the framework of the EU project OSOA. <i>Atmospheric Chemistry and Physics</i> , 2004 , 4, 657-678	6.8	46
31	Real-time mass spectrometry. Analytical and Bioanalytical Chemistry, 2003, 375, 36-7	4.4	3
30	New particle formation from photooxidation of diiodomethane (CH2I2). <i>Journal of Geophysical Research</i> , 2003 , 108,		164
29	Direct quantitative analysis of organic compounds in the gas and particle phase using a modified atmospheric pressure chemical ionization source in combination with ion trap mass spectrometry. <i>Analytical Chemistry</i> , 2003 , 75, 1410-7	7.8	17
28	On-line characterization of gaseous and particulate organic analytes using atmospheric pressure chemical ionization mass spectrometry. <i>Spectrochimica Acta, Part B: Atomic Spectroscopy</i> , 2002 , 57, 163	5 ³ 1647	25
27	Direct analysis of highly oxidised organic aerosol constituents by on-line ion trap mass spectrometry in the negative-ion mode. <i>Rapid Communications in Mass Spectrometry</i> , 2002 , 16, 496-504	2.2	37
26	Marine aerosol formation from biogenic iodine emissions. <i>Nature</i> , 2002 , 417, 632-6	50.4	611
25	Aerosol formation: atmospheric particles from organic vapours. <i>Nature</i> , 2002 , 416, 497-8	50.4	348
24	Emission of Biogenic Volatile Organic Compounds: An Overview of Field, Laboratory and Modelling Studies Performed during the 'Tropospheric Research Program' (TFS) 1997\(\bar{\mathbb{Q}}\)000. <i>Journal of Atmospheric Chemistry</i> , 2002 , 42, 159-177	3.2	14
23	A dedicated study of New Particle Formation and Fate in the Coastal Environment (PARFORCE): Overview of objectives and achievements. <i>Journal of Geophysical Research</i> , 2002 , 107, PAR 1-1		142
22	Calculating a Relational Program for Transitive Reductions of Strongly Connected Graphs. <i>Lecture Notes in Computer Science</i> , 2002 , 258-275	0.9	
21	. Tellus, Series B: Chemical and Physical Meteorology, 2001 , 53, 406-422	3.3	22
20	Structural elucidation of monoterpene oxidation products by ion trap fragmentation using on-line atmospheric pressure chemical ionisation mass spectrometry in the negative ion mode. <i>Rapid Communications in Mass Spectrometry</i> , 2001 , 15, 2259-72	2.2	50
19	Ein analytischer Ansatz ffleine detaillierte Studie des atmosphflschen organischen Aerosols. <i>Angewandte Chemie</i> , 2001 , 113, 4129-4132	3.6	5
18	An Analytical Approach for a Comprehensive Study of Organic Aerosols. <i>Angewandte Chemie - International Edition</i> , 2001 , 40, 3998-4001	16.4	12
17	Relational depth-first-search with applications. <i>Information Sciences</i> , 2001 , 139, 167-186	7.7	13

LIST OF PUBLICATIONS

16	On-line measurements of Epinene ozonolysis products using an atmospheric pressure chemical ionisation ion-trap mass spectrometer. <i>Atmospheric Environment</i> , 2001 , 35, 2927-2940	5.3	50
15	Iodine oxide homogeneous nucleation: An explanation for coastal new particle production. <i>Geophysical Research Letters</i> , 2001 , 28, 1949-1952	4.9	150
14	Deriving relational programs for computing kernels by reconstructing a proof of Richardson's theorem. <i>Science of Computer Programming</i> , 2000 , 38, 1-25	1.1	7
13	Field and laboratory studies on secondary organic aerosol composition. <i>Journal of Aerosol Science</i> , 2000 , 31, 236-237	4.3	
12	On-line characterization of organic aerosols formed from biogenic precursors using atmospheric pressure chemical ionization mass spectrometry. <i>Analytical Chemistry</i> , 2000 , 72, 1905-12	7.8	58
11	Differentiation between de novo synthesized and constitutively released terpenoids from Fagus sylvatica. <i>Phytochemistry</i> , 1999 , 51, 383-388	4	14
10	Application of gas chromatography-cryocondensation-Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry to the identification of gas phase reaction products from the alpha-pinene/ozone reaction. <i>Journal of Chromatography A</i> , 1999 , 864, 299-314	4.5	22
9	Spurenanalytik luftgetragener organischer Komponenten. <i>Nachrichten Aus Der Chemie</i> , 1999 , 47, 801-8	304	
8	AtmosphEenchemie biogener Kohlenwasserstoffe. <i>Chemie in Unserer Zeit</i> , 1998 , 32, 182-191	0.2	2
7	Using thermodesorption-GC/cryocondensation-FT-IR for the measurement of biogenic VOC emissions. <i>Freseniusmournal of Analytical Chemistry</i> , 1998 , 362, 148-154		5
6	Molecular composition of organic aerosols formed in the Dinene/O3 reaction: Implications for new particle formation processes. <i>Journal of Geophysical Research</i> , 1998 , 103, 25569-25578		168
5	Sampling and analysis of terpenes in air. An interlaboratory comparison. <i>Atmospheric Environment</i> , 1997 , 31, 35-49	5.3	66
4	Formation of Organic Aerosols from the Oxidation of Biogenic Hydrocarbons. <i>Journal of Atmospheric Chemistry</i> , 1997 , 26, 189-222	3.2	608
3	Emissions of Volatile Organic Compounds from Sunflower and Beech: Dependence on Temperature and Light Intensity. <i>Journal of Atmospheric Chemistry</i> , 1997 , 27, 291-318	3.2	143
2	Gas/Particle Partitioning and Secondary Organic Aerosol Yields. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	1186
1	Measurements Of Biogenic Hydrocarbons And Their Atmospheric Degradation In Forests. International Journal of Environmental Analytical Chemistry, 1993 , 52, 29-37	1.8	15