Mohamed N Seleem

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7630865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brucellosis: A re-emerging zoonosis. Veterinary Microbiology, 2010, 140, 392-398.	1.9	592
2	The value of antimicrobial peptides in the age of resistance. Lancet Infectious Diseases, The, 2020, 20, e216-e230.	9.1	573
3	Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Scientific Reports, 2016, 6, 29707.	3.3	213
4	Antibacterial activity and mechanism of action of auranofin against multi-drug resistant bacterial pathogens. Scientific Reports, 2016, 6, 22571.	3.3	142
5	Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections. Scientific Reports, 2015, 5, 11596.	3.3	127
6	Dual Targeting of Intracellular Pathogenic Bacteria with a Cleavable Conjugate of Kanamycin and an Antibacterial Cell-Penetrating Peptide. Journal of the American Chemical Society, 2016, 138, 10945-10949.	13.7	117
7	Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Scientific Reports, 2015, 5, 16407.	3.3	97
8	Brucella: A pathogen without classic virulence genes. Veterinary Microbiology, 2008, 129, 1-14.	1.9	96
9	Discovery and Characterization of Potent Thiazoles versus Methicillin- and Vancomycin-Resistant <i>Staphylococcus aureus</i> . Journal of Medicinal Chemistry, 2014, 57, 1609-1615.	6.4	91
10	Phenotypic Profiling of Antibiotic Response Signatures in Escherichia coli Using Raman Spectroscopy. Antimicrobial Agents and Chemotherapy, 2014, 58, 1302-1314.	3.2	87
11	Antibiotic Susceptibility Determination within One Cell Cycle at Single-Bacterium Level by Stimulated Raman Metabolic Imaging. Analytical Chemistry, 2018, 90, 3737-3743.	6.5	86
12	Targeting Methicillin-Resistant Staphylococcus aureus with Short Salt-Resistant Synthetic Peptides. Antimicrobial Agents and Chemotherapy, 2014, 58, 4113-4122.	3.2	77
13	Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3002-3010.	2.4	77
14	Targeting <i>Brucella melitensis</i> with polymeric nanoparticles containing streptomycin and doxycycline. FEMS Microbiology Letters, 2009, 294, 24-31.	1.8	76
15	Synthesis and antibacterial evaluation of a novel series of synthetic phenylthiazole compounds against methicillin-resistant Staphylococcus aureus (MRSA). European Journal of Medicinal Chemistry, 2015, 94, 306-316.	5.5	75
16	Repurposing auranofin for the treatment of cutaneous staphylococcal infections. International Journal of Antimicrobial Agents, 2016, 47, 195-201.	2.5	75
17	A short D-enantiomeric antimicrobial peptide with potent immunomodulatory and antibiofilm activity against multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii. Scientific Reports, 2017, 7, 6953.	3.3	75
18	Anti-biofilm activity and synergism of novel thiazole compounds with glycopeptide antibiotics against multidrug-resistant Staphylococci. Journal of Antibiotics, 2015, 68, 259-266.	2.0	73

#	Article	IF	CITATIONS
19	Repurposing Approach Identifies Auranofin with Broad Spectrum Antifungal Activity That Targets Mia40-Erv1 Pathway. Frontiers in Cellular and Infection Microbiology, 2017, 7, 4.	3.9	73
20	Rapid Determination of Antimicrobial Susceptibility by Stimulated Raman Scattering Imaging of D ₂ 0 Metabolic Incorporation in a Single Bacterium. Advanced Science, 2020, 7, 2001452.	11.2	72
21	Repurposing Non-Antimicrobial Drugs and Clinical Molecules to Treat Bacterial Infections. Current Pharmaceutical Design, 2015, 21, 4106-4111.	1.9	72
22	Repurposing celecoxib as a topical antimicrobial agent. Frontiers in Microbiology, 2015, 6, 750.	3.5	70
23	Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Scientific Reports, 2016, 6, 20832.	3.3	69
24	Synergistic interactions of sulfamethoxazole and azole antifungal drugs against emerging multidrug-resistant Candida auris. International Journal of Antimicrobial Agents, 2018, 52, 754-761.	2.5	69
25	Silica-Antibiotic Hybrid Nanoparticles for Targeting Intracellular Pathogens. Antimicrobial Agents and Chemotherapy, 2009, 53, 4270-4274.	3.2	65
26	Targeting Intracellular Pathogenic Bacteria with Unnatural Prolineâ€Rich Peptides: Coupling Antibacterial Activity with Macrophage Penetration. Angewandte Chemie - International Edition, 2013, 52, 9664-9667.	13.8	65
27	Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens. PLoS ONE, 2015, 10, e0133877.	2.5	63
28	Antibacterial and antivirulence activities of auranofin against Clostridium difficile. International Journal of Antimicrobial Agents, 2019, 53, 54-62.	2.5	61
29	Antimicrobial Peptides and Peptidomimetics - Potent Therapeutic Allies for Staphylococcal Infections. Current Pharmaceutical Design, 2015, 21, 2073-2088.	1.9	60
30	Photolysis of Staphyloxanthin in Methicillinâ€Resistant <i>Staphylococcus aureus</i> Potentiates Killing by Reactive Oxygen Species. Advanced Science, 2019, 6, 1900030.	11.2	59
31	Repurposing auranofin as an intestinal decolonizing agent for vancomycin-resistant enterococci. Scientific Reports, 2018, 8, 8353.	3.3	58
32	Optimization of Acetazolamide-Based Scaffold as Potent Inhibitors of Vancomycin-Resistant <i>Enterococcus</i> . Journal of Medicinal Chemistry, 2020, 63, 9540-9562.	6.4	57
33	Particle engineering for intracellular delivery of vancomycin to methicillin-resistant Staphylococcus aureus (MRSA)-infected macrophages. Journal of Controlled Release, 2017, 267, 133-143.	9.9	56
34	Hierarchical Micro/Mesoporous Copper Structure with Enhanced Antimicrobial Property via Laser Surface Texturing. Advanced Materials Interfaces, 2020, 7, 1901890.	3.7	51
35	Antibacterial Characterization of Novel Synthetic Thiazole Compounds against Methicillin-Resistant Staphylococcus pseudintermedius. PLoS ONE, 2015, 10, e0130385.	2.5	50
36	Second-Generation Phenylthiazole Antibiotics with Enhanced Pharmacokinetic Properties. Journal of Medicinal Chemistry, 2016, 59, 4900-4912.	6.4	50

#	Article	IF	CITATIONS
37	Structure–Activity Relationship Studies of Acetazolamide-Based Carbonic Anhydrase Inhibitors with Activity against <i>Neisseria gonorrhoeae</i> . ACS Infectious Diseases, 2021, 7, 1969-1984.	3.8	48
38	Phenylthiazole Antibacterial Agents Targeting Cell Wall Synthesis Exhibit Potent Activity in Vitro and in Vivo against Vancomycin-Resistant Enterococci. Journal of Medicinal Chemistry, 2017, 60, 2425-2438.	6.4	46
39	Arylthiazole antibiotics targeting intracellular methicillin-resistant Staphylococcus aureus (MRSA) that interfere with bacterial cell wall synthesis. European Journal of Medicinal Chemistry, 2017, 139, 665-673.	5.5	46
40	Repurposing ebselen for decolonization of vancomycin-resistant enterococci (VRE). PLoS ONE, 2018, 13, e0199710.	2.5	46
41	Investigating the Antibacterial Activity of Biphenylthiazoles against Methicillin- and Vancomycin-Resistant <i>Staphylococcus aureus</i> (MRSA and VRSA). Journal of Medicinal Chemistry, 2017, 60, 4074-4085.	6.4	43
42	Reversal of Azole Resistance in Candida albicans by Sulfa Antibacterial Drugs. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	43
43	Repurposing niclosamide for intestinal decolonization of vancomycin-resistant enterococci. International Journal of Antimicrobial Agents, 2018, 51, 897-904.	2.5	42
44	Development of benzimidazole-based derivatives as antimicrobial agents and their synergistic effect with colistin against gram-negative bacteria. European Journal of Medicinal Chemistry, 2020, 186, 111850.	5.5	42
45	Phenylthiazoles with tert-Butyl side chain: Metabolically stable with anti-biofilm activity. European Journal of Medicinal Chemistry, 2018, 151, 110-120.	5.5	41
46	From Phenylthiazoles to Phenylpyrazoles: Broadening the Antibacterial Spectrum toward Carbapenem-Resistant Bacteria. Journal of Medicinal Chemistry, 2019, 62, 7998-8010.	6.4	41
47	Flexible Microneedle Array Patch for Chronic Wound Oxygenation and Biofilm Eradication. ACS Applied Bio Materials, 2021, 4, 5405-5415.	4.6	41
48	Drug Repurposing for the Treatment of Staphylococcal Infections. Current Pharmaceutical Design, 2015, 21, 2089-2100.	1.9	40
49	Bacteriological profiling of diphenylureas as a novel class of antibiotics against methicillin-resistant Staphylococcus aureus. PLoS ONE, 2017, 12, e0182821.	2.5	39
50	Antibacterial Activity of Novel Cationic Peptides against Clinical Isolates of Multi-Drug Resistant Staphylococcus pseudintermedius from Infected Dogs. PLoS ONE, 2014, 9, e116259.	2.5	38
51	Diphenylurea derivatives for combating methicillin- and vancomycin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2017, 130, 73-85.	5.5	38
52	In Vitro Screening of an FDA-Approved Library Against ESKAPE Pathogens. Current Pharmaceutical Design, 2017, 23, 2147-2157.	1.9	38
53	Antibacterial Evaluation of Synthetic Thiazole Compounds In Vitro and In Vivo in a Methicillin-Resistant Staphylococcus aureus (MRSA) Skin Infection Mouse Model. PLoS ONE, 2015, 10, e0142321.	2.5	37
54	Comparative virulence studies and transcriptome analysis of Staphylococcus aureus strains isolated from animals. Scientific Reports, 2016, 6, 35442.	3.3	36

Mohamed N Seleem

#	Article	IF	CITATIONS
55	Targeting biofilms and persisters of ESKAPE pathogens with P14KanS, a kanamycin peptide conjugate. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 848-859.	2.4	36
56	Alkynyl-containing phenylthiazoles: Systemically active antibacterial agents effective against methicillin-resistant Staphylococcus aureus (MRSA). European Journal of Medicinal Chemistry, 2018, 148, 195-209.	5.5	36
57	Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages. International Journal of Antimicrobial Agents, 2013, 41, 358-362.	2.5	35
58	Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria. Microbial Pathogenesis, 2021, 158, 105040.	2.9	35
59	Efficacy of short novel antimicrobial and anti-inflammatory peptides in a mouse model of methicillin-resistant Staphylococcus aureus (MRSA) skin infection. Drug Design, Development and Therapy, 2014, 8, 1979.	4.3	34
60	N-(1,3,4-oxadiazol-2-yl)benzamide analogs, bacteriostatic agents against methicillin- and vancomycin-resistant bacteria. European Journal of Medicinal Chemistry, 2018, 155, 797-805.	5.5	34
61	Photoâ€Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA. Advanced Science, 2020, 7, 1903117.	11.2	34
62	Antibacterial nanotruffles for treatment of intracellular bacterial infection. Biomaterials, 2020, 262, 120344.	11.4	33
63	Repurposing approach identifies pitavastatin as a potent azole chemosensitizing agent effective against azole-resistant Candida species. Scientific Reports, 2020, 10, 7525.	3.3	33
64	Synthesis of 3-(3-aryl-pyrrolidin-1-yl)-5-aryl-1,2,4-triazines that have antibacterial activity and also inhibit inorganic pyrophosphatase. Bioorganic and Medicinal Chemistry, 2014, 22, 406-418.	3.0	32
65	Biofilm-infected wounds in a dog. Journal of the American Veterinary Medical Association, 2014, 244, 699-707.	0.5	32
66	Phenylthiazole antibiotics: A metabolism-guided approach to overcome short duration of action. European Journal of Medicinal Chemistry, 2017, 126, 604-613.	5.5	32
67	Curcumin: A natural derivative with antibacterial activity against Clostridium difficile. Journal of Global Antimicrobial Resistance, 2020, 21, 154-161.	2.2	32
68	Potent Synergistic Interactions between Lopinavir and Azole Antifungal Drugs against Emerging Multidrug-Resistant Candida auris. Antimicrobial Agents and Chemotherapy, 2020, 65, .	3.2	30
69	Investigation of auranofin and gold-containing analogues antibacterial activity against multidrug-resistant Neisseria gonorrhoeae. Scientific Reports, 2020, 10, 5602.	3.3	30
70	Discovery of a Novel Dibromoquinoline Compound Exhibiting Potent Antifungal and Antivirulence Activity That Targets Metal Ion Homeostasis. ACS Infectious Diseases, 2018, 4, 403-414.	3.8	29
71	In vitro and in vivo activities of the carbonic anhydrase inhibitor, dorzolamide, against vancomycin-resistant enterococci. PeerJ, 2021, 9, e11059.	2.0	29
72	<i>In Vivo</i> Antibacterial Activity of Acetazolamide. Antimicrobial Agents and Chemotherapy, 2021, 65, .	3.2	29

#	Article	IF	CITATIONS
73	Targeting Multidrug-resistant Staphylococci with an anti-rpoA Peptide Nucleic Acid Conjugated to the HIV-1 TAT Cell Penetrating Peptide. Molecular Therapy - Nucleic Acids, 2016, 5, e339.	5.1	28
74	Identification of a Phenylthiazole Small Molecule with Dual Antifungal and Antibiofilm Activity Against Candida albicans and Candida auris. Scientific Reports, 2019, 9, 18941.	3.3	28
75	Targeting Essential Genes in Salmonella enterica Serovar Typhimurium with Antisense Peptide Nucleic Acid. Antimicrobial Agents and Chemotherapy, 2012, 56, 6407-6409.	3.2	27
76	Auranofin, at clinically achievable dose, protects mice and prevents recurrence from Clostridioides difficile infection. Scientific Reports, 2020, 10, 7701.	3.3	27
77	Nanomedicine for intracellular therapy. FEMS Microbiology Letters, 2012, 332, 1-9.	1.8	26
78	Targeting <i>Listeria Monocytogenes rpoA</i> and <i>rpoD</i> Genes Using Peptide Nucleic Acids. Nucleic Acid Therapeutics, 2013, 23, 363-367.	3.6	26
79	Naphthylthiazoles: Targeting Multidrug-Resistant and Intracellular <i>Staphylococcus aureus</i> with Biofilm Disruption Activity. ACS Infectious Diseases, 2018, 4, 1679-1691.	3.8	26
80	Repurposing Salicylamide for Combating Multidrug-Resistant Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	26
81	Repurposing FDA-approved sulphonamide carbonic anhydrase inhibitors for treatment of <i>Neisseria gonorrhoeae</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 51-61.	5.2	26
82	Aryl-alkyl-lysines: Membrane-Active Fungicides That Act against Biofilms of <i>Candida albicans</i> . ACS Infectious Diseases, 2017, 3, 293-301.	3.8	25
83	Stimulated Raman Imaging Reveals Aberrant Lipogenesis as a Metabolic Marker for Azole-Resistant <i>Candida albicans</i> . Analytical Chemistry, 2017, 89, 9822-9829.	6.5	25
84	Biphenylthiazole antibiotics with an oxadiazole linker: An approach to improve physicochemical properties and oral bioavailability. European Journal of Medicinal Chemistry, 2018, 143, 1448-1456.	5.5	25
85	Antivirulence activity of auranofin against vancomycin-resistant enterococci: in vitro and in vivo studies. International Journal of Antimicrobial Agents, 2020, 55, 105828.	2.5	25
86	Bacterial carbonic anhydrases: underexploited antibacterial therapeutic targets. Future Medicinal Chemistry, 2021, 13, 1619-1622.	2.3	25
87	Lipophilic efficient phenylthiazoles with potent undecaprenyl pyrophosphatase inhibitory activity. European Journal of Medicinal Chemistry, 2019, 175, 49-62.	5.5	24
88	Repurposing the Antiamoebic Drug Diiodohydroxyquinoline for Treatment of Clostridioides difficile Infections. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	24
89	Drug delivery using novel nanoplexes against a Salmonella mouse infection model. Journal of Nanoparticle Research, 2010, 12, 905-914.	1.9	23
90	Alkoxyphenylthiazoles with broad-spectrum activity against multidrug-resistant gram-positive bacterial pathogens. European Journal of Medicinal Chemistry, 2018, 152, 318-328.	5.5	23

Mohamed N Seleem

#	Article	IF	CITATIONS
91	Oxadiazolylthiazoles as novel and selective antifungal agents. European Journal of Medicinal Chemistry, 2020, 189, 112046.	5.5	23
92	Auranofin Rapidly Eradicates Methicillin-resistant Staphylococcus aureus (MRSA) in an Infected Pressure Ulcer Mouse Model. Scientific Reports, 2020, 10, 7251.	3.3	23
93	Plasmid-Based System for High-Level Gene Expression and Antisense Gene Knockdown in Bartonella henselae. Applied and Environmental Microbiology, 2009, 75, 5434-5436.	3.1	22
94	Rapid Uptake and Photodynamic Inactivation of Staphylococci by Ga(III)-Protoporphyrin IX. ACS Infectious Diseases, 2018, 4, 1564-1573.	3.8	22
95	Aprepitant, an antiemetic agent, interferes with metal ion homeostasis of <i>Candida auris</i> and displays potent synergistic interactions with azole drugs. Virulence, 2020, 11, 1466-1481.	4.4	22
96	Evaluation of N-phenyl-2-aminothiazoles for treatment of multi-drug resistant and intracellular Staphylococcus aureus infections. European Journal of Medicinal Chemistry, 2020, 202, 112497.	5.5	22
97	Ospemifene displays broad-spectrum synergistic interactions with itraconazole through potent interference with fungal efflux activities. Scientific Reports, 2020, 10, 6089.	3.3	22
98	Structure-activity relationship studies for inhibitors for vancomycin-resistant <i>Enterococcus</i> and human carbonic anhydrases. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1838-1844.	5.2	21
99	Improved expression vector for <i>Brucella</i> species. BioTechniques, 2004, 37, 740-744.	1.8	20
100	Modifying the lipophilic part of phenylthiazole antibiotics to control their drug-likeness. European Journal of Medicinal Chemistry, 2020, 185, 111830.	5.5	20
101	Repurposing Fenamic Acid Drugs To Combat Multidrug-Resistant Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	20
102	Nanocapsules modify membrane interaction of polymyxin B to enable safe systemic therapy of Gram-negative sepsis. Science Advances, 2021, 7, .	10.3	20
103	Targeting intracellular bacteria with an extended cationic amphiphilic polyproline helix. Organic and Biomolecular Chemistry, 2015, 13, 5930-5936.	2.8	19
104	<i>In situ</i> Detection of a Single Bacterium in Complex Environment by Hyperspectral CARS Imaging. ChemistrySelect, 2016, 1, 513-517.	1.5	19
105	Rapid synthesis of bicyclic lactones via palladium-catalyzed aminocarbonylative lactonizations. Chemical Communications, 2017, 53, 7238-7241.	4.1	19
106	Chemical Space Exploration around Thieno[3,2- <i>d</i>]pyrimidin-4(3 <i>H</i>)-one Scaffold Led to a Novel Class of Highly Active <i>Clostridium difficile</i> Inhibitors. Journal of Medicinal Chemistry, 2019, 62, 9772-9791.	6.4	19
107	Potent trifluoromethoxy, trifluoromethylsulfonyl, trifluoromethylthio and pentafluorosulfanyl containing (1,3,4-oxadiazol-2-yl)benzamides against drug-resistant Gram-positive bacteria. RSC Medicinal Chemistry, 2020, 11, 102-110.	3.9	19
108	In vivo efficacy of acetazolamide in a mouse model of Neisseria gonorrhoeae infection. Microbial Pathogenesis, 2022, 164, 105454.	2.9	19

#	Article	IF	CITATIONS
109	Discovery and characterization of aryl isonitriles as a new class of compounds versus methicillin- and vancomycin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2015, 101, 384-390.	5.5	18
110	Discovery of Lipophilic Bisphosphonates That Target Bacterial Cell Wall and Quinone Biosynthesis. Journal of Medicinal Chemistry, 2019, 62, 2564-2581.	6.4	18
111	Antimicrobial photodynamic activity of gallium-substituted haemoglobin on silver nanoparticles. Nanoscale, 2020, 12, 21734-21742.	5.6	18
112	Mitofusin 2 regulates neutrophil adhesive migration and the actin cytoskeleton. Journal of Cell Science, 2020, 133, .	2.0	18
113	Ultrapotent Inhibitor of <i>Clostridioides difficile</i> Growth, Which Suppresses Recurrence <i>In Vivo</i> . Journal of Medicinal Chemistry, 2020, 63, 11934-11944.	6.4	18
114	Targeted drug delivery using silica xerogel systems to treat diseases due to intracellular pathogens. Materials Science and Engineering C, 2009, 29, 2313-2318.	7.3	17
115	Over-expression of homologous antigens in a leucine auxotroph of Brucella abortus strain RB51 protects mice against a virulent B. suis challenge. Vaccine, 2011, 29, 3106-3110.	3.8	16
116	In Vitro Antibacterial Activity of Rhodanine Derivatives against Pathogenic Clinical Isolates. PLoS ONE, 2016, 11, e0164227.	2.5	16
117	<i>tert</i> -Butylphenylthiazoles with an oxadiazole linker: a novel orally bioavailable class of antibiotics exhibiting antibiofilm activity. RSC Advances, 2019, 9, 6770-6778.	3.6	16
118	Virulence and transcriptome profile of multidrug-resistant Escherichia coli from chicken. Scientific Reports, 2017, 7, 8335.	3.3	15
119	Balancing Physicochemical Properties of Phenylthiazole Compounds with Antibacterial Potency by Modifying the Lipophilic Side Chain. ACS Infectious Diseases, 2020, 6, 80-90.	3.8	15
120	<i>Brucella abortus</i> Strain RB51 Leucine Auxotroph as an Environmentally Safe Vaccine for Plasmid Maintenance and Antigen Overexpression. Applied and Environmental Microbiology, 2008, 74, 7051-7055.	3.1	14
121	In Vitro Trafficking and Efficacy of Core-Shell Nanostructures for Treating Intracellular <i>Salmonella</i> Infections. Antimicrobial Agents and Chemotherapy, 2009, 53, 3985-3988.	3.2	14
122	Effect of entF deletion on iron acquisition and erythritol metabolism by Brucella abortus 2308. FEMS Microbiology Letters, 2011, 316, 1-6.	1.8	14
123	Silodosin in the treatment of distal ureteric stones in children: A prospective, randomised, placebo-controlled study. Arab Journal of Urology Arab Association of Urology, 2017, 15, 194-198.	1.5	14
124	Phenylthiazoles with nitrogenous side chain: An approach to overcome molecular obesity. European Journal of Medicinal Chemistry, 2019, 182, 111593.	5.5	14
125	Discovery of Prenyltransferase Inhibitors with <i>In Vitro</i> and <i>In Vivo</i> Antibacterial Activity. ACS Infectious Diseases, 2020, 6, 2979-2993.	3.8	14
126	Synthesis and spectral characterization of some heterocyclic nitrogen compounds. European Journal of Chemistry, 2013, 4, 121-123.	0.6	13

#	Article	IF	CITATIONS
127	β,γ-Diaryl α-methylene-γ-butyrolactones as potent antibacterials against methicillin-resistant Staphylococcus aureus. Bioorganic Chemistry, 2020, 104, 104183.	4.1	13
128	Nanosecond electric pulses rapidly enhance the inactivation of Gram-negative bacteria using Gram-positive antibiotics. Applied Microbiology and Biotechnology, 2020, 104, 2217-2227.	3.6	13
129	Dithiocarbamates effectively inhibit the α-carbonic anhydrase from <i>Neisseria gonorrhoeae</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1-8.	5.2	13
130	Efficacy of Amphiphilic Core-Shell Nanostructures Encapsulating Gentamicin in an <i>In Vitro Salmonella</i> and <i>Listeria</i> Intracellular Infection Model. Antimicrobial Agents and Chemotherapy, 2010, 54, 3524-3526.	3.2	12
131	Synthesis and antimicrobial evaluation of new halogenated 1,3-Thiazolidin-4-ones. Bioorganic Chemistry, 2020, 95, 103517.	4.1	12
132	Wearable and Flexible Ozone Generating System for Treatment of Infected Dermal Wounds. Frontiers in Bioengineering and Biotechnology, 2020, 8, 458.	4.1	12
133	N-(1,3,4-Oxadiazol-2-yl)Benzamides as Antibacterial Agents against Neisseria gonorrhoeae. International Journal of Molecular Sciences, 2021, 22, 2427.	4.1	12
134	Inhibitors of Intracellular Gram-Positive Bacterial Growth Synthesized via Povarov–Doebner Reactions. ACS Infectious Diseases, 2019, 5, 1820-1830.	3.8	11
135	Development of Biphenylthiazoles Exhibiting Improved Pharmacokinetics and Potent Activity Against Intracellular <i>Staphylococcus aureus</i> . ACS Infectious Diseases, 2020, 6, 2887-2900.	3.8	11
136	In vivo efficacy of auranofin in a hamster model of Clostridioides difficile infection. Scientific Reports, 2021, 11, 7093.	3.3	11
137	Cloning, expression and characterization of immunogenic aminopeptidase N fromBrucella melitensis. FEMS Immunology and Medical Microbiology, 2006, 48, 252-256.	2.7	10
138	Antibacterial activity and therapeutic efficacy of Fl-PRPRPL-5, a cationic amphiphilic polyproline helix, in a mouse model of staphylococcal skin infection. Drug Design, Development and Therapy, 2015, 9, 5749.	4.3	10
139	Screening for potent and selective anticlostridial leads among FDA-approved drugs. Journal of Antibiotics, 2020, 73, 392-409.	2.0	10
140	Activity of native vs. synthetic promoters inBrucella. FEMS Microbiology Letters, 2008, 288, 211-215.	1.8	9
141	An aryl isonitrile compound with an improved physicochemical profile that is effective in two mouse models of multidrug-resistant Staphylococcus aureus infection. Journal of Global Antimicrobial Resistance, 2019, 19, 1-7.	2.2	9
142	Screening of Natural Products and Approved Oncology Drug Libraries for Activity against Clostridioides difficile. Scientific Reports, 2020, 10, 5966.	3.3	9
143	Establishment of a Gene Expression System in Ochrobactrum anthropi. Applied and Environmental Microbiology, 2006, 72, 6833-6836.	3.1	8
144	High-level heterologous gene expression in Ochrobactrum anthropi using an A-rich UP element. Applied Microbiology and Biotechnology, 2007, 73, 1123-1127.	3.6	8

#	Article	IF	CITATIONS
145	Overexpression of Brucella putative glycosyltransferase WbkA in B. abortus RB51 leads to production of exopolysaccharide. Frontiers in Cellular and Infection Microbiology, 2015, 5, 54.	3.9	8
146	Investigation of aryl isonitrile compounds with potent, broad-spectrum antifungal activity. Bioorganic and Medicinal Chemistry, 2017, 25, 2926-2931.	3.0	8
147	A Library Approach to Cationic Amphiphilic Polyproline Helices that Target Intracellular Pathogenic Bacteria. ACS Infectious Diseases, 2018, 4, 1300-1305.	3.8	8
148	Exploring the structure-activity relationships of diphenylurea as an antibacterial scaffold active against methicillin- and vancomycin-resistant Staphylococcus aureus. European Journal of Medicinal Chemistry, 2022, 234, 114204.	5.5	8
149	Auranofin exerts antibacterial activity against Neisseria gonorrhoeae in a female mouse model of genital tract infection. PLoS ONE, 2022, 17, e0266764.	2.5	8
150	Construction of a high-efficiency shuttle vector for Histophilus somni. Journal of Microbiological Methods, 2008, 74, 106-109.	1.6	7
151	Second-generation aryl isonitrile compounds targeting multidrug-resistant Staphylococcus aureus. Bioorganic and Medicinal Chemistry, 2019, 27, 1845-1854.	3.0	7
152	Repurposing the Veterinary Antiprotozoal Drug Ronidazole for the Treatment of Clostridioides difficile Infection. International Journal of Antimicrobial Agents, 2020, 56, 106188.	2.5	7
153	Targeting Intracellular Pathogenic Bacteria Through N-Terminal Modification of Cationic Amphiphilic Polyproline Helices. Journal of Organic Chemistry, 2020, 85, 7468-7475.	3.2	7
154	Evaluation of ebselen in resolving a methicillin-resistant Staphylococcus aureus infection of pressure ulcers in obese and diabetic mice. PLoS ONE, 2021, 16, e0247508.	2.5	7
155	Nonâ€Toxic Glycosylated Gold Nanoparticleâ€Amphotericin B Conjugates Reduce Biofilms and Intracellular Burden of Fungi and Parasites. Advanced Therapeutics, 2021, 4, 2000293.	3.2	7
156	High-throughput screening identifies a novel natural product-inspired scaffold capable of inhibiting Clostridioides difficile in vitro. Scientific Reports, 2021, 11, 10913.	3.3	7
157	Enhanced expression, detection and purification of recombinant proteins using RNA stem loop and tandem fusion tags. Applied Microbiology and Biotechnology, 2007, 75, 1385-1392.	3.6	6
158	Reporter genes for real-time <i>in vivo</i> monitoring of <i>Ochrobactrum anthropi</i> infection. FEMS Microbiology Letters, 2008, 286, 124-129.	1.8	6
159	Vectors for enhanced gene expression and protein purification in Salmonella. Gene, 2008, 421, 95-98.	2.2	6
160	Label-Free Detection and Discrimination of Bacterial Pathogens Based on Hemin Recognition. Bioconjugate Chemistry, 2016, 27, 1713-1722.	3.6	6
161	Synthesis of new pyrazolo[5,1-c][1,2,4]triazines with antifungal and antibiofilm activities. Chemical Papers, 2020, 74, 1241-1252.	2.2	6
162	Mechanistic Studies and <i>In Vivo</i> Efficacy of an Oxadiazole-Containing Antibiotic. Journal of Medicinal Chemistry, 2022, 65, 6612-6630.	6.4	6

#	Article	IF	CITATIONS
163	Probiotics: insights and new opportunities for <i>Clostridioides difficile</i> intervention. Critical Reviews in Microbiology, 2023, 49, 414-434.	6.1	6
164	Identification of four compounds from the Pharmakon library with antifungal activity against <i>Candida auris</i> and species of <i>Cryptococcus</i> . Medical Mycology, 2022, 60, .	0.7	6
165	Brucella. , 2009, , 1-64.		5
166	Effect of concrete cover thickness and main reinforcement ratio on flexural behavior of RC beams strengthened by NSM-GFRP bars. Frattura Ed Integrita Strutturale, 2020, 14, 197-210.	0.9	5
167	Evaluation of bisphenylthiazoles as a promising class for combating multidrug-resistant fungal infections. PLoS ONE, 2021, 16, e0258465.	2.5	5
168	Lingual mucosal graft two-stage Bracka technique for redo hypospadias repair. Arab Journal of Urology Arab Association of Urology, 2017, 15, 236-241.	1.5	4
169	Aryl-alkyl-lysines: Novel agents for treatment of C. difficile infection. Scientific Reports, 2020, 10, 5624.	3.3	4
170	Investigating auranofin for the treatment of infected diabetic pressure ulcers in mice and dermal toxicity in pigs. Scientific Reports, 2021, 11, 10935.	3.3	4
171	Simple method for transformation of Ochrobactrum anthropi. World Journal of Microbiology and Biotechnology, 2008, 24, 2111-2114.	3.6	3
172	Ability of Brucella abortus rough vaccine strains to elicit DC and innate immunity in lung using a murine respiratory model. Vaccine, 2010, 28, 7009-7015.	3.8	3
173	PD23-06 OUTCOME OF MINI-PCNL VERSUS EXTRACORPOREAL SHOCK WAVE LITHOTRIPSY IN TREATMENT OF SINGLE LOWER CALYCEAL STONE 10-20MM WITH FAVORABLE LOWER CALYCEAL ANATOMY: A PROSPECTIVE RANDOMIZED STUDY. Journal of Urology, 2016, 195, .	0.4	3
174	Antibacterial activity and safety of commercial veterinary cationic steroid antibiotics and neutral superoxidized water. PLoS ONE, 2018, 13, e0193217.	2.5	3
175	Carney Complex: A Rare Case of Multicentric Cardiac Myxoma Associated with Endocrinopathy. Case Reports in Cardiology, 2018, 2018, 1-7.	0.2	1
176	Rapid determination of antimicrobial susceptibility by stimulated Raman scattering imaging of D2O metabolic incorporation in a single bacterium. , 2021, , .		1
177	Sheep as a Potential Model of Intradiscal Infection by the Bacterium Cutibacterium acnes. Veterinary Sciences, 2021, 8, 48.	1.7	1
178	Staphyloxanthin photobleaching sensitizes methicillin-resistant Staphylococcus aureus to reactive oxygen species attack. , 2018, , .		1
179	Rapid Antimicrobial Susceptibility Testing by Stimulated Raman Scattering Imaging of Deuterium Incorporation in a Single Bacterium. Journal of Visualized Experiments, 2022, , .	0.3	1
180	Brucella abortus Strain RB51 can be Used to Express Potentially Protective Antigens of Toxoplasma gondii. Journal of Eukaryotic Microbiology, 2006, 53, S166-S168.	1.7	0

#	Article	IF	CITATIONS
181	Tightly Regulated Expression Vectors for Ochrobactrum anthropi. Current Microbiology, 2010, 60, 242-247.	2.2	0
182	PD31-02 SILODOSIN IN TREATMENT OF DISTAL URETERAL STONES IN CHILDREN: A PROSPECTIVE, RANDOMIZED, PLACEBO CONTROLLED STUDY. Journal of Urology, 2016, 195, .	0.4	0
183	Aberrant lipogenesis is a metabolic marker for azole-resistant candida albicans (Conference) Tj ETQq1 1 0.784314	4 rgBT /Ov	erlock 10 T
184	Big heart. BMJ Case Reports, 2018, 2018, bcr-2018-225266.	0.5	0
185	Comparison between a novel tap water wound irrigation device with sterile saline device in an open traumatic wound animal model. Trauma, 2020, 22, 176-181.	0.5	0
186	Antibiotic Resistance: Photoâ€Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA (Adv. Sci. 6/2020). Advanced Science, 2020, 7, 2070035.	11.2	0
187	RNA-seq-based transcriptome analysis of a cefquinome-treated, highly resistant, and virulent MRSA strain. Microbial Pathogenesis, 2021, 160, 105201.	2.9	0
188	Synthesis and Characterization of Magnetic Silica Xerogels Containing Antimicrobials for Targeting Intracellular Pathogens. Journal of Bionanoscience, 2009, 3, 16-21.	0.4	0
189	Inhibiting staphylococcus aureus antibiotic resistance via photo-disassembly of membrane microdomains. , 2020, , .		0
190	Magnesium ion disrupts LAP surface reâ€association of Listeria monocytogenes by dissociation of InlB. FASEB Journal, 2020, 34, 1-1.	0.5	0