Serena Carra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7630848/publications.pdf

Version: 2024-02-01

69 papers

13,074 citations

42 h-index 95083 68 g-index

76 all docs 76 docs citations

76 times ranked 23742 citing authors

#	Article	IF	CITATIONS
1	Targeted protein degradation: from small molecules to complex organelles—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2022, 1510, 79-99.	1.8	5
2	RNA Molecular Signature Profiling in PBMCs of Sporadic ALS Patients: HSP70 Overexpression Is Associated with Nuclear SOD1. Cells, 2022, 11, 293.	1.8	5
3	Pathogenic variants of Valosinâ€containing protein induce lysosomal damage and transcriptional activation of autophagy regulators in neuronal cells. Neuropathology and Applied Neurobiology, 2022, 48, e12818.	1.8	5
4	Protein products of nonstop mRNA disrupt nucleolar homeostasis. Cell Stress and Chaperones, 2021, 26, 549-561.	1,2	7
5	Hsp90â€mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling. EMBO Reports, 2021, 22, e51740.	2.0	41
6	The landscape of molecular chaperones across human tissues reveals a layered architecture of core and variable chaperones. Nature Communications, 2021, 12, 2180.	5.8	62
7	Small heat-shock protein HSPB3 promotes myogenesis by regulating the lamin B receptor. Cell Death and Disease, 2021, 12, 452.	2.7	16
8	HspB8 prevents aberrant phase transitions of FUS by chaperoning its folded RNA-binding domain. ELife, 2021, 10, .	2.8	42
9	ALS and FTD: Where RNA metabolism meets protein quality control. Seminars in Cell and Developmental Biology, 2020, 99, 183-192.	2.3	39
10	BAG3 and BAG6 differentially affect the dynamics of stress granules by targeting distinct subsets of defective polypeptides released from ribosomes. Cell Stress and Chaperones, 2020, 25, 1045-1058.	1,2	7
11	BAG3 Pro209 mutants associated with myopathy and neuropathy relocate chaperones of the CASA-complex to aggresomes. Scientific Reports, 2020, 10, 8755.	1.6	32
12	Studying heat shock proteins through single-molecule mechanical manipulation. Cell Stress and Chaperones, 2020, 25, 615-628.	1,2	5
13	The Regulation of the Small Heat Shock Protein B8 in Misfolding Protein Diseases Causing Motoneuronal and Muscle Cell Death. Frontiers in Neuroscience, 2019, 13, 796.	1.4	23
14	Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO Journal, 2019, 38, e101341.	3.5	58
15	Nucleolus: A Liquid Droplet Compartment for Misbehaving Proteins. Current Biology, 2019, 29, R930-R932.	1.8	10
16	Nucleoli and Promyelocytic Leukemia Protein (PML) bodies are phase separated nuclear protein quality control compartments for misfolded proteins. Molecular and Cellular Oncology, 2019, 6, e1415624.	0.3	10
17	Autophagic and Proteasomal Mediated Removal of Mutant Androgen Receptor in Muscle Models of Spinal and Bulbar Muscular Atrophy. Frontiers in Endocrinology, 2019, 10, 569.	1.5	22
18	Proteostasis and ALS: protocol for a phase II, randomised, double-blind, placebo-controlled, multicentre clinical trial for colchicine in ALS (Co-ALS). BMJ Open, 2019, 9, e028486.	0.8	44

#	Article	IF	Citations
19	The small heat shock protein B8 (HSPB8) efficiently removes aggregating species of dipeptides produced in C9ORF72-related neurodegenerative diseases. Cell Stress and Chaperones, 2018, 23, 1-12.	1.2	69
20	Myopathy associated BAG3 mutations lead to protein aggregation by stalling Hsp70 networks. Nature Communications, 2018, 9, 5342.	5.8	65
21	Quality Control of Membraneless Organelles. Journal of Molecular Biology, 2018, 430, 4711-4729.	2.0	75
22	Molecular Chaperones Regulating the Dynamics, Composition and Functionality of RNP Granules: Implications for Age-Related Diseases. Heat Shock Proteins, 2018, , 205-222.	0.2	0
23	Tdp-25 Routing to Autophagy and Proteasome Ameliorates its Aggregation in Amyotrophic Lateral Sclerosis Target Cells. Scientific Reports, 2018, 8, 12390.	1.6	50
24	An interaction study in mammalian cells demonstrates weak binding of HSPB2 to BAG3, which is regulated by HSPB3 and abrogated by HSPB8. Cell Stress and Chaperones, 2017, 22, 531-540.	1.2	22
25	Inhibition of retrograde transport modulates misfolded protein accumulation and clearance in motoneuron diseases. Autophagy, 2017, 13, 1280-1303.	4.3	62
26	An aberrant phase transition of stress granules triggered by misfolded protein and prevented by chaperone function. EMBO Journal, 2017, 36, 1669-1687.	3.5	370
27	The growing world of small heat shock proteins: from structure to functions. Cell Stress and Chaperones, 2017, 22, 601-611.	1.2	158
28	Aberrant Compartment Formation by HSPB2 Mislocalizes Lamin A and Compromises Nuclear Integrity and Function. Cell Reports, 2017, 20, 2100-2115.	2.9	43
29	The small heat shock protein B8 (HSPB8) modulates proliferation and migration of breast cancer cells. Oncotarget, 2017, 8, 10400-10415.	0.8	42
30	Granulostasis: Protein Quality Control of RNP Granules. Frontiers in Molecular Neuroscience, 2017, 10, 84.	1.4	108
31	The Role of the Heat Shock Protein B8 (HSPB8) in Motoneuron Diseases. Frontiers in Molecular Neuroscience, 2017, 10, 176.	1.4	54
32	Transcriptional induction of the heat shock protein B8 mediates the clearance of misfolded proteins responsible for motor neuron diseases. Scientific Reports, 2016, 6, 22827.	1.6	78
33	The chaperone HSPB8 reduces the accumulation of truncated TDP-43 species in cells and protects against TDP-43-mediated toxicity. Human Molecular Genetics, 2016, 25, 3908-3924.	1.4	72
34	Specific protein homeostatic functions of small heatâ€shock proteins increase lifespan. Aging Cell, 2016, 15, 217-226.	3.0	45
35	A Surveillance Function of the HSPB8-BAG3-HSP70 Chaperone Complex Ensures Stress Granule Integrity and Dynamism. Molecular Cell, 2016, 63, 796-810.	4.5	244
36	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701

#	Article	IF	CITATIONS
37	The Role of the Protein Quality Control System in SBMA. Journal of Molecular Neuroscience, 2016, 58, 348-364.	1.1	32
38	Role of HSPB8 in the Proteostasis Network: From Protein Synthesis to Protein Degradation and Beyond. Heat Shock Proteins, 2015, , 487-510.	0.2	0
39	BAG3 induces the sequestration of proteasomal clients into cytoplasmic puncta. Autophagy, 2014, 10, 1603-1621.	4.3	131
40	Inhibition of autophagy, lysosome and VCP function impairs stress granule assembly. Cell Death and Differentiation, 2014, 21, 1838-1851.	5.0	132
41	Barcoding heat shock proteins to human diseases: looking beyond the heat shock response. DMM Disease Models and Mechanisms, 2014, 7, 421-434.	1.2	100
42	Clearance of the mutant androgen receptor in motoneuronal models of spinal and bulbar muscular atrophy. Neurobiology of Aging, 2013, 34, 2585-2603.	1.5	57
43	Different anti-aggregation and pro-degradative functions of the members of the mammalian sHSP family in neurological disorders. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20110409.	1.8	71
44	The Regulation of the Autophagic Network and Its Implications for Human Disease. International Journal of Biological Sciences, 2013, 9, 1121-1133.	2.6	33
45	Differential autophagy power in the spinal cord and muscle of transgenic ALS mice. Frontiers in Cellular Neuroscience, 2013, 7, 234.	1.8	53
46	Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Progress in Neurobiology, 2012, 97, 83-100.	2.8	66
47	The family of mammalian small heat shock proteins (HSPBs): Implications in protein deposit diseases and motor neuropathies. International Journal of Biochemistry and Cell Biology, 2012, 44, 1657-1669.	1.2	75
48	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
49	The HSPB8â€BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathology and Applied Neurobiology, 2012, 38, 39-53.	1.8	76
50	Small heat shock proteins, protein degradation and protein aggregation diseases. Autophagy, 2011, 7, 101-103.	4.3	46
51	Emerging roles of molecular chaperones and co-chaperones in selective autophagy: focus on BAG proteins. Journal of Molecular Medicine, 2011, 89, 1175-1182.	1.7	102
52	BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity. PLoS ONE, 2011, 6, e16828.	1.1	62
53	Identification of the key structural motifs involved in HspB8/HspB6–Bag3 interaction. Biochemical Journal, 2010, 425, 245-257.	1.7	161
54	Abnormal interaction of motor neuropathy-associated mutant HspB8 (Hsp22) forms with the RNA helicase Ddx20 (gemin3). Cell Stress and Chaperones, 2010, 15, 567-582.	1.2	32

#	Article	IF	CITATIONS
55	The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Human Molecular Genetics, 2010, 19, 3440-3456.	1.4	303
56	Identification of the Drosophila Ortholog of HSPB8. Journal of Biological Chemistry, 2010, 285, 37811-37822.	1.6	79
57	A role of small heat shock protein B8 (HspB8) in the autophagic removal of misfolded proteins responsible for neurodegenerative diseases. Autophagy, 2010, 6, 958-960.	4.3	97
58	HSPB7 is the most potent polyQ aggregation suppressor within the HSPB family of molecular chaperones. Human Molecular Genetics, 2010, 19, 4677-4693.	1.4	146
59	HspB8 Participates in Protein Quality Control by a Non-chaperone-like Mechanism That Requires elF2α Phosphorylation. Journal of Biological Chemistry, 2009, 284, 5523-5532.	1.6	109
60	The stress-inducible HspB8-Bag3 complex induces the eIF2α kinase pathway: Implications for protein quality control and viral factory degradation?. Autophagy, 2009, 5, 428-429.	4.3	55
61	Structural and Functional Diversities between Members of the Human HSPB, HSPH, HSPA, and DNAJ Chaperone Families. Biochemistry, 2008, 47, 7001-7011.	1.2	327
62	HspB8 and Bag3: A new chaperone complex targeting misfolded proteins to macroautophagy. Autophagy, 2008, 4, 237-239.	4.3	214
63	HspB8 Chaperone Activity toward Poly(Q)-containing Proteins Depends on Its Association with Bag3, a Stimulator of Macroautophagy. Journal of Biological Chemistry, 2008, 283, 1437-1444.	1.6	306
64	Role of HspB1 and HspB8 in Hereditary Peripheral Neuropathies: Beyond the Chaperone Function. , 2008, , 139-155.		0
65	HspB8, a small heat shock protein mutated in human neuromuscular disorders, has in vivo chaperone activity in cultured cells. Human Molecular Genetics, 2005, 14, 1659-1669.	1.4	159
66	Chronic treatment with desipramine and fluoxetine modulate BDNF, $CaMKK\hat{l}\pm$ and $CaMKK\hat{l}^2$ mRNA levels in the hippocampus of transgenic mice expressing antisense RNA against the glucocorticoid receptor. Neuropharmacology, 2004, 47, 1062-1069.	2.0	50
67	Cloning of mouse Ca2+/calmodulin-dependent protein kinase kinase beta (CaMKKβ) and characterization of CaMKKβ and CaMKKα distribution in the adult mouse brain. Molecular Brain Research, 2003, 111, 216-221.	2.5	27
68	Altered Regulation of CREB by Chronic Antidepressant Administration in the Brain of Transgenic Mice with Impaired Glucocorticoid Receptor Function. Neuropsychopharmacology, 2002, 26, 605-614.	2.8	37
69	Modulation of glutamate receptors in response to the novel antipsychotic olanzapine in rats. Biological Psychiatry, 2001, 50, 117-122.	0.7	50