Andres Fuster-Guillo

List of Publications by Citations

Source: https://exaly.com/author-pdf/7630682/andres-fuster-guillo-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

42 255 10 14 g-index

46 328 2.8 3.45 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
42	A collaborative working model for enhancing the learning process of science & engineering students. <i>Computers in Human Behavior</i> , 2020 , 103, 140-150	7.7	27
41	A comparative study of registration methods for RGB-D video of static scenes. Sensors, 2014, 14, 8547	- 76 .8	23
40	A Quantitative Comparison of Calibration Methods for RGB-D Sensors Using Different Technologies. <i>Sensors</i> , 2017 , 17,	3.8	16
39	Evaluating Impact on Motivation and Academic Performance of a Game-Based Learning Experience Using Kahoot. <i>Frontiers in Psychology</i> , 2019 , 10, 2843	3.4	15
38	Three-dimensional planar model estimation using multi-constraint knowledge based on k-means and RANSAC. <i>Applied Soft Computing Journal</i> , 2015 , 34, 572-586	7.5	14
37	A Novel Prediction Method for Early Recognition of Global Human Behaviour in Image Sequences. <i>Neural Processing Letters</i> , 2016 , 43, 363-387	2.4	13
36	A predictive model for recognizing human behaviour based on trajectory representation 2014 ,		13
35	EMAR: Multiplane 3D Marker based Registration for depth-sensing cameras. <i>Expert Systems With Applications</i> , 2015 , 42, 9353-9365	7.8	11
34	Human behaviour recognition based on trajectory analysis using neural networks 2013,		11
33	Evaluation of sampling method effects in 3D non-rigid registration. <i>Neural Computing and Applications</i> , 2017 , 28, 953-967	4.8	10
32	When Deep Learning Meets Data Alignment: A Review on Deep Registration Networks (DRNs). <i>Applied Sciences (Switzerland)</i> , 2020 , 10, 7524	2.6	10
31	3D non-rigid registration using color: Color Coherent Point Drift. <i>Computer Vision and Image Understanding</i> , 2018 , 169, 119-135	4.3	10
30	Group activity description and recognition based on trajectory analysis and neural networks 2016,		9
29	Self-Organizing Activity Description Map to represent and classify human behaviour 2015,		8
28	Use of mathematical morphology in real-time path planning. <i>Kybernetes</i> , 2002 , 31, 115-123	2	8
27	The university as an open data ecosystem. <i>International Journal of Design and Nature and Ecodynamics</i> , 2016 , 11, 250-257	2.3	8
26	Adjustable compression method for still JPEG images. <i>Signal Processing: Image Communication</i> , 2015 , 32, 16-32	2.8	6

(2017-2019)

Practical Method of Improving the Teamwork of Engineering Students Using Team Contracts to Minimize Conflict Situations. <i>IEEE Access</i> , 2019 , 7, 65083-65092	3.5	4	
RGB-D-Based Framework to Acquire, Visualize and Measure the Human Body for Dietetic Treatments. <i>Sensors</i> , 2020 , 20,	3.8	4	
. IEEE Access, 2021 , 9, 12968-12988	3.5	4	
Model-Based Multi-view Registration for RGB-D Sensors. Lecture Notes in Computer Science, 2013, 496	-5039	3	
Deep Learning Architecture for Group Activity Recognition using Description of Local Motions* 2020 ,		3	
Constrained self-organizing feature map to preserve feature extraction topology. <i>Neural Computing and Applications</i> , 2017 , 28, 439-459	4.8	2	
A Novel Active Imaging Model to Design Visual Systems: A Case of Inspection System for Specular Surfaces. <i>Sensors</i> , 2017 , 17,	3.8	2	
Non-rigid point set registration using color and data downsampling 2015 ,		2	
Developing a data map for opening public sector information. <i>International Journal of Design and Nature and Ecodynamics</i> , 2016 , 11, 370-375	2.3	2	
A Survey of 3D Rigid Registration Methods for RGB-D Cameras. <i>Advances in Computer and Electrical Engineering Book Series</i> , 2018 , 74-98	0.3	2	
A Comparative Study of Downsampling Techniques for Non-rigid Point Set Registration Using Color. <i>Lecture Notes in Computer Science</i> , 2015 , 281-290	0.9	2	
3D Technologies to Acquire and Visualize the Human Body for Improving Dietetic Treatment. <i>Proceedings (mdpi)</i> , 2019 , 31, 53	0.3	2	
The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation. <i>Scientific Data</i> , 2022 , 9,	8.2	2	
Automatic generation of image acquisition conditions for the quality control of specular surfaces 2007 ,		1	
Image labelling in real conditions. <i>Kybernetes</i> , 2005 , 34, 1587-1597	2	1	
Defining a Master Data Management Approach for Increasing Open Data Understandability. Lecture Notes in Computer Science, 2020 , 169-178	0.9	1	
Topology Preserving Self-Organizing Map of Features in Image Space for Trajectory Classification. <i>Lecture Notes in Computer Science</i> , 2015 , 271-280	0.9	1	
3D Body Registration from RGB-D Data with Unconstrained Movements and Single Sensor. <i>Lecture Notes in Computer Science</i> , 2017 , 317-329	0.9	1	
	Minimize Conflict Situations. IEEE Access, 2019, 7, 65083-65092 RGB-D-Based Framework to Acquire, Visualize and Measure the Human Body for Dietetic Treatments. Sensors, 2020, 20. IEEE Access, 2021, 9, 12968-12988 Model-Based Multi-view Registration for RGB-D Sensors. Lecture Notes in Computer Science, 2013, 4960 Deep Learning Architecture for Group Activity Recognition using Description of Local Motions* 2020, Constrained self-organizing feature map to preserve feature extraction topology. Neural Computing and Applications, 2017, 28, 439-459 A Novel Active Imaging Model to Design Visual Systems: A Case of Inspection System for Specular Surfaces. Sensors, 2017, 17, Non-rigid point set registration using color and data downsampling 2015, Developing a data map for opening public sector information. International Journal of Design and Nature and Ecodynamics, 2016, 11, 370-375 A Survey of 3D Rigid Registration Methods for RGB-D Cameras. Advances in Computer and Electrical Engineering Book Series, 2018, 74-98 A Comparative Study of Downsampling Techniques for Non-rigid Point Set Registration Using Color. Lecture Notes in Computer Science, 2015, 281-290 3D Technologies to Acquire and Visualize the Human Body for Improving Dietetic Treatment. Proceedings (mdpi), 2019, 31, 53 The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation. Scientific Data, 2022, 9, Automatic generation of image acquisition conditions for the quality control of specular surfaces 2007, Image labelling in real conditions. Kybernetes, 2005, 34, 1587-1597 Defining a Master Data Management Approach for Increasing Open Data Understandability. Lecture Notes in Computer Science, 2015, 271-280 3D Body Registration from RGB-D Data with Unconstrained Movements and Single Sensor. Lecture	Minimize Conflict Situations. IEEE Access, 2019, 7, 65083-65092 RGB-D-Based Framework to Acquire, Visualize and Measure the Human Body for Dietetic Treatments. Sensors, 2020, 20, 20, 20, 20, 20, 20, 20, 20,	RGB-D-Based Framework to Acquire, Visualize and Measure the Human Body for Dietetic Treatments. Sensors, 2020, 20, IEEE Access, 2021, 9, 12968-12988 3,5 4 Model-Based Multi-view Registration for RGB-D Sensors. Lecture Notes in Computer Science, 2013, 496-5033 3 Deep Learning Architecture for Group Activity Recognition using Description of Local Motions* 2020, Constrained self-organizing feature map to preserve feature extraction topology. Neural Computing and Applications, 2017, 28, 439-459 A Novel Active Imaging Model to Design Visual Systems: A Case of Inspection System for Specular Surfaces. Sensors, 2017, 17, Non-rigid point set registration using color and data downsampling 2015, 2 Developing a data map for opening public sector information. International Journal of Design and Nature and Ecodynamics, 2016, 11, 370-375 A Survey of 3D Rigid Registration Methods for RGB-D Cameras. Advances in Computer and Electrical Engineering Book Series, 2018, 74-98 A Comparative Study of Downsampling Techniques for Non-rigid Point Set Registration Using Color. Lecture Notes in Computer Science, 2015, 281-290 3D Technologies to Acquire and Visualize the Human Body for Improving Dietetic Treatment. Proceedings (Inda), 2019, 31, 53 The DeepFish computer vision dataset for fish instance segmentation, classification, and size estimation. Scientific Data, 2022, 9, Automatic generation of image acquisition conditions for the quality control of specular surfaces 2007, Image labelling in real conditions. Kybernetes, 2005, 34, 1587-1597 Lecture Notes in Computer Science, 2020, 169-178 Topology Preserving Self-Organizing Map of Features in Image Space for Trajectory Classification. Lecture Notes in Computer Science, 2015, 271-280 3D Body Registration from RGB-D Data with Unconstrained Movements and Single Sensor. Lecture

7	Simulation of Automated Visual Inspection Systems for Specular Surfaces Quality Control. <i>Lecture Notes in Computer Science</i> , 2007 , 749-762	0.9	1
6	Comparative Analysis of Temporal Segmentation Methods of Video Sequences 2013 , 43-58		1
5	IA-CPS: Intelligent architecture for cyber-physical systems management. <i>Journal of Computational Science</i> , 2021 , 53, 101409	3.4	1
4	A non-invasive approach for total cholesterol level prediction using machine learning. <i>IEEE Access</i> , 2022 , 1-1	3.5	1
3	Multidimensional Measurement of Virtual Human Bodies Acquired with Depth Sensors. <i>Advances in Intelligent Systems and Computing</i> , 2021 , 721-730	0.4	
2	An Iterative Method for 3D Body Registration Using a Single RGB-D Sensor. <i>International Journal of Computer Vision and Image Processing</i> , 2017 , 7, 26-39	0.7	
1	Iterative multilinear optimization for planar model fitting under geometric constraints. <i>PeerJ Computer Science</i> , 2021 , 7, e691	2.7	