
José Antonio GÃ3mez Vidal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7630256/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Targeting Several Biologically Reported Targets of Glioblastoma Multiforme by Assaying 2D and 3D Cultured Cells. Cellular and Molecular Neurobiology, 2022, 42, 1909-1920.	3.3	1
2	New salicylic acid derivatives, double inhibitors of glycolate oxidase and lactate dehydrogenase, as effective agents decreasing oxalate production. European Journal of Medicinal Chemistry, 2022, 237, 114396.	5.5	7
3	Modifications on the Tetrahydroquinoline Scaffold Targeting a Phenylalanine Cluster on GPER as Antiproliferative Compounds against Renal, Liver and Pancreatic Cancer Cells. Pharmaceuticals, 2021, 14, 49.	3.8	8
4	Small Molecule-Based Enzyme Inhibitors in the Treatment of Primary Hyperoxalurias. Journal of Personalized Medicine, 2021, 11, 74.	2.5	15
5	In silico design of HDAC6 inhibitors with neuroprotective effects. Journal of Biomolecular Structure and Dynamics, 2021, , 1-19.	3.5	1
6	<i>O</i> -Alkyl Hydroxamates Display Potent and Selective Antileishmanial Activity. Journal of Medicinal Chemistry, 2020, 63, 5734-5751.	6.4	12
7	Hydroxamic acid derivatives as HDAC1, HDAC6 and HDAC8 inhibitors with antiproliferative activity in cancer cell lines. Scientific Reports, 2020, 10, 10462.	3.3	28
8	A nanodelivered Vorinostat derivative is a promising oral compound for the treatment of visceral leishmaniasis. Pharmacological Research, 2019, 139, 375-383.	7.1	18
9	Salicylic Acid Derivatives Inhibit Oxalate Production in Mouse Hepatocytes with Primary Hyperoxaluria Type 1. Journal of Medicinal Chemistry, 2018, 61, 7144-7167.	6.4	16
10	Searching the conformational complexity and binding properties of HDAC6 through docking and molecular dynamic simulations. Journal of Biomolecular Structure and Dynamics, 2017, 35, 2794-2814.	3.5	27
11	Synthesis of l-Octaarginine through Microencapsulated Palladium-Catalyzed Allyl Ester Deprotection. Synlett, 2014, 25, 2319-2322.	1.8	5
12	Production of the Phanerochaete flavido-alba laccase in Aspergillus niger for synthetic dyes decolorization and biotransformation. World Journal of Microbiology and Biotechnology, 2014, 30, 201-211.	3.6	44
13	Exploring the Potential binding Sites of Some Known HDAC Inhibitors on Some HDAC8 Conformers by Docking Studies. Applied Biochemistry and Biotechnology, 2014, 173, 1907-1926.	2.9	24
14	Anticancer activity of (1,2,3,5-tetrahydro-4,1-benzoxazepine-3-yl)-pyrimidines and -purines against the MCF-7 cell line: Preliminary cDNA microarray studies. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 1457-1460.	2.2	34
15	5-Fluorouracil Derivatives Induce Differentiation Mediated by Tubulin and HLA Class I Modulation. Medicinal Chemistry, 2007, 3, 233-239.	1.5	10
16	Corrigendum to "Synthesis and reactivity of (RS)-6-chloro-7- or 9-(1,2,3,5-tetrahydro-4,1-benzoxazepin-3-yl)-7H- or 9H-purines bearing a nitrobenzenesulfonyl group on the nitrogen atom― Tetrahedron, 2007, 63, 9023.	1.9	0
17	A synthetic uracil derivative with antitumor activity through decreasing cyclin D1 and Cdk1, and increasing p21 and p27 in MCF-7 cells. Breast Cancer Research and Treatment, 2007, 105, 237-246.	2.5	23
18	Conformationally Restricted Dipeptide Amides as Potent and Selective Neuronal Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2006, 49, 6254-6263.	6.4	22

#	Article	IF	CITATIONS
19	Synthesis and anticancer activity studies of novel 1-(2,3-dihydro-5H-1,4-benzodioxepin-3-yl)uracil and (6′-substituted)-7- or 9-(2,3-dihydro-5H-1,4-benzodioxepin-3-yl)-7H- or 9H-purines. Tetrahedron, 2006, 62, 11724-11733.	1.9	26
20	Study of the Factors that Control the Ratio of the Products between 5-Fluorouracil, Uracil, and TetrahydrobenzoxazepineO,O-Acetals Bearing Electron-Withdrawing Groups on the Nitrogen Atom. Journal of Organic Chemistry, 2006, 71, 1043-1054.	3.2	14
21	Exploring the Binding Conformations of Bulkier Dipeptide Amide Inhibitors in Constitutive Nitric Oxide Synthasesâ€. Biochemistry, 2005, 44, 15222-15229.	2.5	18
22	Structural basis for dipeptide amide isoform-selective inhibition of neuronal nitric oxide synthase. Nature Structural and Molecular Biology, 2004, 11, 54-59.	8.2	75
23	Synthesis of tetrahydrobenzoxazepine acetals with electron-withdrawing groups on the nitrogen atom. Novel scaffolds endowed with anticancer activity against breast cancer cells. Tetrahedron, 2004, 60, 11547-11557.	1.9	47
24	Potent and Selective Conformationally Restricted Neuronal Nitric Oxide Synthase Inhibitors. Journal of Medicinal Chemistry, 2004, 47, 703-710.	6.4	29
25	Actual Targets in Cytodifferentiation Cancer Therapy. Current Topics in Medicinal Chemistry, 2004, 4, 175-202.	2.1	12
26	Quantitative structure–activity relationships for a series of symmetrical bisquaternary anticancer compounds. Bioorganic and Medicinal Chemistry, 2002, 10, 2215-2231.	3.0	34
27	Mild and Selective Sodium Azide Mediated Cleavage ofp-Nitrobenzoic Esters. Organic Letters, 2001, 3, 2477-2479.	4.6	40
28	Short, Highly Efficient Syntheses of Protected 3-Azido- and 4-Azidoproline and Their Precursors. Organic Letters, 2001, 3, 2481-2484.	4.6	56