Sweta Rani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7629917/publications.pdf

Version: 2024-02-01

		361045	377514
37	3,436	20	34
papers	citations	h-index	g-index
37	37	37	6224
3/	37	37	0224
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The Role of Deregulated MicroRNAs in Age-Related Macular Degeneration Pathology. Translational Vision Science and Technology, 2021, 10, 12.	1.1	23
2	Dexamethasone-Loaded Nanostructured Lipid Carriers for the Treatment of Dry Eye Disease. Pharmaceutics, 2021, 13, 905.	2.0	23
3	Chitosan-Coated PLGA Nanoparticles Encapsulating Triamcinolone Acetonide as a Potential Candidate for Sustained Ocular Drug Delivery. Pharmaceutics, 2021, 13, 1590.	2.0	40
4	Enhancement of fluorescence of single quantum dots by encasing in semiconductor and metal nanoparticles. Journal of Applied Physics, 2021, 130 , .	1,1	3
5	Identification of Novel Serum MicroRNAs in Age-Related Macular Degeneration. Translational Vision Science and Technology, 2020, 9, 28.	1.1	12
6	Suppression of Blinking and Enhancement of Optical Properties of Core-Shell Quantum Dots by Structural Formulation. IEEE Nanotechnology Magazine, 2020, 19, 792-799.	1.1	7
7	Nanosensitive optical coherence tomography to assess wound healing within the cornea. Biomedical Optics Express, 2020, 11, 3407.	1.5	17
8	Development of acquired resistance to lapatinib may sensitise HER2-positive breast cancer cells to apoptosis induction by obatoclax and TRAIL. BMC Cancer, 2018, 18, 965.	1.1	21
9	MiRNA Biogenesis and Regulation of Diseases: An Overview. Methods in Molecular Biology, 2017, 1509, 1-10.	0.4	505
10	Exosomal MicroRNA Discovery in Age-Related Macular Degeneration. Methods in Molecular Biology, 2017, 1509, 93-113.	0.4	9
11	Subclinical Detection of Diabetic Cardiomyopathy with MicroRNAs: Challenges and Perspectives. Journal of Diabetes Research, 2016, 2016, 1-12.	1.0	33
12	Quantitative assessment of rat corneal thickness and morphology during stem cell therapy by high-speed optical coherence tomography. , 2016 , , .		1
13	The Exosome ―A Naturally Secreted Nanoparticle and its Application to Wound Healing. Advanced Materials, 2016, 28, 5542-5552.	11.1	213
14	Mesenchymal stromal cells (MSCs) and colorectal cancer: a troublesome twosome for the anti-tumour immune response?. Oncotarget, 2016, 7, 60752-60774.	0.8	56
15	miR-134 in extracellular vesicles reduces triple-negative breast cancer aggression and increases drug sensitivity. Oncotarget, 2015, 6, 32774-32789.	0.8	203
16	Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Molecular Therapy, 2015, 23, 812-823.	3.7	877
17	Analysis of Changes in Phosphorylation of Receptor Tyrosine Kinases: Antibody Arrays. Methods in Molecular Biology, 2015, 1233, 15-23.	0.4	5
18	Neuromedin U to increase IL-6 levels and to expand cancer stem cells in HER2-positive breast cancer cells Journal of Clinical Oncology, 2015, 33, 614-614.	0.8	0

#	Article	IF	Citations
19	MicroRNA Profiling of Exosomes Isolated from Biofluids and Conditioned Media. Methods in Molecular Biology, 2014, 1182, 131-144.	0.4	12
20	Neuromedin U: A Candidate Biomarker and Therapeutic Target to Predict and Overcome Resistance to HER-Tyrosine Kinase Inhibitors. Cancer Research, 2014, 74, 3821-3833.	0.4	34
21	miR-630 targets IGF1R to regulate response to HER-targeting drugs and overall cancer cell progression in HER2 over-expressing breast cancer. Molecular Cancer, 2014, 13, 71.	7.9	66
22	miRâ€34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate, 2014, 74, 1320-1334.	1.2	188
23	Exosomes from triple-negative breast cancer cells can transfer phenotypic traits representing their cells of origin to secondary cells. European Journal of Cancer, 2013, 49, 1845-1859.	1.3	192
24	Comparative antiproliferative effects of iniparib and olaparib on a panel of triple-negative and non-triple-negative breast cancer cell lines. Cancer Biology and Therapy, 2013, 14, 537-545.	1.5	35
25	Global analysis of serum microRNAs as potential biomarkers for lung adenocarcinoma. Cancer Biology and Therapy, 2013, 14, 1104-1112.	1.5	66
26	The potential of miR-630, an IGF1R regulator, as a predictive biomarker for HER2-targeted drugs Journal of Clinical Oncology, 2013, 31, 620-620.	0.8	0
27	Docetaxel-Resistance in Prostate Cancer: Evaluating Associated Phenotypic Changes and Potential for Resistance Transfer via Exosomes. PLoS ONE, 2012, 7, e50999.	1.1	367
28	The use of <scp>LC</scp> â€ <scp>MS</scp> to identify differentially expressed proteins in docetaxelâ€resistant prostate cancer cell lines. Proteomics, 2012, 12, 2115-2126.	1.3	13
29	MAGEâ€D4B is a novel marker of poor prognosis and potential therapeutic target involved in breast cancer tumorigenesis. International Journal of Cancer, 2012, 130, 1991-2002.	2.3	26
30	Software and Tools for Microarray Data Analysis. Methods in Molecular Biology, 2011, 784, 41-53.	0.4	14
31	Isolation of Exosomes for Subsequent mRNA, MicroRNA, and Protein Profiling. Methods in Molecular Biology, 2011, 784, 181-195.	0.4	89
32	Characterisation and manipulation of docetaxel resistant prostate cancer cell lines. Molecular Cancer, 2011, 10, 126.	7.9	170
33	Reverse-Transcriptase Polymerase Chain Reaction to Detect Extracellular mRNAs. Methods in Molecular Biology, 2011, 784, 15-25.	0.4	4
34	Decreasing Txnip mRNA and Protein Levels in Pancreatic MIN6 Cells Reduces Reactive Oxygen Species and Restores Glucose Regulated Insulin Secretion. Cellular Physiology and Biochemistry, 2010, 25, 667-674.	1.1	25
35	Proteomic analysis of conditioned media from glucose responsive and glucose nonâ€responsive phenotypes reveals a panel of secreted proteins associated with beta cell dysfunction. Electrophoresis, 2008, 29, 4141-4149.	1.3	14
36	Detection of Amplifiable mRNA Extracellular to Insulin-Producing Cells: Potential for Predicting Beta Cell Mass and Function. Clinical Chemistry, 2007, 53, 1936-1944.	1.5	15

#	Article	IF	CITATIONS
37	Phenotypic and global gene expression profile changes between low passage and high passage MIN-6 cells. Journal of Endocrinology, 2006, 191, 665-676.	1.2	58