Jose Luis Iborra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7629563/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metabolic engineering for high yielding L(-)-carnitine production in Escherichia coli. Microbial Cell Factories, 2013, 12, 56.	4.0	13
2	Selective synthesis of panthenyl esters by a kinetically controlled enzymatic process. Biocatalysis and Biotransformation, 2013, 31, 175-180.	2.0	2
3	Role of Central Metabolism in the Osmoadaptation of the Halophilic Bacterium Chromohalobacter salexigens. Journal of Biological Chemistry, 2013, 288, 17769-17781.	3.4	53
4	Acetate scavenging activity in Escherichia coli: interplay of acetyl–CoA synthetase and the PEP–glyoxylate cycle in chemostat cultures. Applied Microbiology and Biotechnology, 2012, 93, 2109-2124.	3.6	71
5	An efficient activity ionic liquid-enzyme system for biodiesel production. Green Chemistry, 2011, 13, 444.	9.0	78
6	cAMPâ€CRP coâ€ordinates the expression of the protein acetylation pathway with central metabolism in <i>Escherichia coli</i> . Molecular Microbiology, 2011, 82, 1110-1128.	2.5	82
7	A recyclable enzymatic biodiesel production process in ionic liquids. Bioresource Technology, 2011, 102, 6336-6339.	9.6	68
8	Ectoines in cell stress protection: Uses and biotechnological production. Biotechnology Advances, 2010, 28, 782-801.	11.7	296
9	Metabolic adaptation of Escherichia coli to long-term exposure to salt stress. Process Biochemistry, 2010, 45, 1459-1467.	3.7	19
10	On the nature of ionic liquids and their effects on lipases that catalyze ester synthesis. Journal of Biotechnology, 2009, 140, 234-241.	3.8	104
11	An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli. Microbial Cell Factories, 2009, 8, 54.	4.0	118
12	Long term continuous chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol using ionic liquids and supercritical carbon dioxide. Green Chemistry, 2009, 11, 538.	9.0	59
13	Design of Metabolic Engineering Strategies for Maximizing l-(-)-Carnitine Production by Escherichia coli. Integration of the Metabolic and Bioreactor Levels. Biotechnology Progress, 2008, 21, 329-337.	2.6	16
14	Role of betaine:CoA ligase (CaiC) in the activation of betaines and the transfer of coenzyme A in <i>Escherichia coli</i> . Journal of Applied Microbiology, 2008, 105, 42-50.	3.1	10
15	Redirecting metabolic fluxes through cofactor engineering: Role of CoA-esters pool during l(â^')-carnitine production by Escherichia coli. Journal of Biotechnology, 2007, 132, 110-117.	3.8	11
16	Ionic liquids improve citronellyl ester synthesis catalyzed by immobilized Candida antarctica lipase B in solvent-free media. Green Chemistry, 2007, 9, 780.	9.0	73
17	Production of L-carnitine by secondary metabolism of bacteria. Microbial Cell Factories, 2007, 6, 31.	4.0	30
18	Salt stress effects on the central and carnitine metabolisms ofEscherichia coli. Biotechnology and Bioengineering, 2007, 96, 722-737.	3.3	36

#	Article	IF	CITATIONS
19	Bioreactors Based on Monolith-Supported Ionic Liquid Phase for Enzyme Catalysis in Supercritical Carbon Dioxide. Advanced Synthesis and Catalysis, 2007, 349, 1077-1084.	4.3	128
20	On the importance of the supporting material for activity of immobilized Candida antarctica lipase B in ionic liquid/hexane and ionic liquid/supercritical carbon dioxide biphasic media. Journal of Supercritical Fluids, 2007, 40, 93-100.	3.2	72
21	Impairing and Monitoring Glucose Catabolite Repression in L-Carnitine Biosynthesis. Biotechnology Progress, 2007, 23, 1286-1296.	2.6	4
22	Plasmid maintenance and physiology of a genetically engineered Escherichia coli strain during continuous l-carnitine production. Biotechnology Letters, 2007, 29, 1549-1556.	2.2	6
23	Analysis of Escherichia coli cell state by flow cytometry during whole cell catalyzed biotransformation for l-carnitine production. Process Biochemistry, 2007, 42, 25-33.	3.7	19
24	Role of energetic coenzyme pools in the production of l-carnitine by Escherichia coli. Metabolic Engineering, 2006, 8, 603-618.	7.0	13
25	Chemoenzymatic dynamic kinetic resolution of rac-1-phenylethanol in ionic liquids and ionic liquids in ionic liquids/supercritical carbon dioxide systems. Biotechnology Letters, 2006, 28, 1559-1565.	2.2	68
26	Model of central and trimethylammonium metabolism for optimizing l-carnitine production by E. coli. Metabolic Engineering, 2005, 7, 401-425.	7.0	10
27	Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into l-carnitine. Enzyme and Microbial Technology, 2005, 37, 300-308.	3.2	43
28	Whole cell biocatalysts stabilization forl-carnitine production. Biocatalysis and Biotransformation, 2005, 23, 149-158.	2.0	4
29	Dynamic structure–function relationships in enzyme stabilization by ionic liquids. Biocatalysis and Biotransformation, 2005, 23, 169-176.	2.0	70
30	Criteria to Design Green Enzymatic Processes in Ionic Liquid/Supercritical Carbon Dioxide Systems. Biotechnology Progress, 2004, 20, 661-669.	2.6	134
31	Kinetic resolution of rac-2-pentanol catalyzed by Candida antarctica lipase B in the ionic liquid, 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnology Letters, 2004, 26, 301-306.	2.2	54
32	Membrane reactor with immobilized Candida antarctica lipase B for ester synthesis in supercritical carbon dioxide. Journal of Supercritical Fluids, 2004, 29, 121-128.	3.2	85
33	Fluorescence and CD spectroscopic analysis of the ?-chymotrypsin stabilization by the ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]amide. Biotechnology and Bioengineering, 2004, 88, 916-924.	3.3	190
34	Synthesis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide. Journal of Molecular Catalysis A, 2004, 214, 113-119.	4.8	61
35	Culture collections and biochemistry. International Microbiology, 2003, 6, 105-112.	2.4	4
36	Enzymatic ester synthesis in ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 9-13.	1.8	114

#	Article	IF	CITATIONS
37	Effect of salt stress on crotonobetaine and D(+)-carnitine biotransformation into L(â^')-carnitine by resting cells of Escherichia coli. Journal of Basic Microbiology, 2003, 43, 259-268.	3.3	15
38	Ester synthesis from trimethylammonium alcohols in dry organic media catalyzed by immobilizedCandida antarctica lipase B. Biotechnology and Bioengineering, 2003, 82, 352-358.	3.3	15
39	Link between primary and secondary metabolism in the biotransformation of trimethylammonium compounds byescherichia coli. Biotechnology and Bioengineering, 2003, 84, 686-699.	3.3	20
40	Racemisation of d(+)-carnitine into l(\hat{a}^{2})-carnitine by Escherichia coli strains. Process Biochemistry, 2003, 39, 287-293.	3.7	5
41	Membrane cell retention systems for continuous production of -carnitine using Proteus sp Journal of Membrane Science, 2003, 214, 101-111.	8.2	12
42	Lipase Catalysis in Ionic Liquids and Supercritical Carbon Dioxide at 150 °C. Biotechnology Progress, 2003, 19, 380-382.	2.6	136
43	Continuous green biocatalytic processes using ionic liquids and supercritical carbon dioxide. Chemical Communications, 2002, , 692-693.	4.1	212
44	Modeling of the biotransformation of crotonobetaine intoL-(â^')-carnitine byEscherichia colistrains. Biotechnology and Bioengineering, 2002, 77, 764-775.	3.3	25
45	Modeling, optimization and experimental assessment of continuous L-(â^')-carnitine production byEscherichia colicultures. Biotechnology and Bioengineering, 2002, 80, 794-805.	3.3	27
46	Active membranes coated with immobilized Candida antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media. Journal of Membrane Science, 2002, 201, 55-64.	8.2	69
47	L(-)-carnitine production using a recombinant Escherichia coli strain. Enzyme and Microbial Technology, 2001, 28, 785-791.	3.2	15
48	Stabilization of ?-chymotrypsin by ionic liquids in transesterification reactions. Biotechnology and Bioengineering, 2001, 75, 563-569.	3.3	233
49	Over-stabilization of Candida antarctica lipase B by ionic liquids in ester synthesis. Biotechnology Letters, 2001, 23, 1529-1533.	2.2	223
50	Preparation of hybrid membranes for enzymatic reaction. Separation and Purification Technology, 2001, 25, 229-233.	7.9	33
51	Determination of -Carnitine by Flow Injection Analysis with NADH Fluorescence Detection. Analytical Biochemistry, 2000, 281, 176-181.	2.4	13
52	Designing enzymatic kyotorphin synthesis in organic media with low water content. Enzyme and Microbial Technology, 2000, 26, 608-613.	3.2	17
53	Title is missing!. Biotechnology Letters, 2000, 22, 771-775.	2.2	15
54	A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. Journal of Proteomics, 2000, 43, 367-378.	2.4	105

#	Article	IF	CITATIONS
55	β-Galactosidase immobilization for milk lactose hydrolysis: a simple experimental and modelling study of batch and continuous reactors. Biochemical Education, 2000, 28, 164-168.	0.1	13
56	A quantitative high-performance liquid chromatographic method to analyse commercial saffron (Crocus sativus L.) products Journal of Chromatography A, 1999, 830, 477-483.	3.7	120
57	Glycosylated α-chymotrypsin as a catalyst for kyotorphin synthesis in water-organic media. Biotechnology Letters, 1999, 21, 595-599.	2.2	15
58	Enzymatic Cycling Assay for d-Carnitine Determination. Analytical Biochemistry, 1999, 274, 34-39.	2.4	12
59	Retention and regeneration of native NAD(H) in noncharged ultrafiltration membrane reactors: Application to l-lactate and gluconate production. , 1998, 57, 510-517.		19
60	Limonin consumption at acidic pH values and absence of aeration by Rhodococcus fascians cells in batch and immobilized continuous systems. Enzyme and Microbial Technology, 1998, 22, 111-116.	3.2	14
61	Biotransformation of D(+)-carnitine into L(â^)-carnitine by resting cells ofEscherichia coliO44 K74. Journal of Applied Microbiology, 1998, 85, 883-890.	3.1	31
62	Effect of zeolite addition on ethanol production from glucose by Saccharomyces bayanus. Journal of Chemical Technology and Biotechnology, 1998, 73, 377-384.	3.2	0
63	Analysis of Commercial Neohesperidin Dihydrochalcone by High Performance Liquid Chromatography. Journal of Liquid Chromatography and Related Technologies, 1997, 20, 2063-2073.	1.0	4
64	Stabilization of Glucose Dehydrogenase with Polyethyleneimine in an Electrochemical Reactor with NAD(P)+ Regeneration. Biotechnology Progress, 1997, 13, 557-561.	2.6	16
65	Dynamic Structure/Function Relationships in the alpha-Chymotrypsin Deactivation Process by Heat and pH. FEBS Journal, 1997, 248, 80-85.	0.2	55
66	Title is missing!. Biotechnology Letters, 1997, 19, 1005-1009.	2.2	9
67	l(â^)-Carnitine production with immobilized Escherichia coli cells in continuous reactors. Enzyme and Microbial Technology, 1997, 21, 531-536.	3.2	17
68	Continuous retention of native NADP(H) in an enzyme membrane reactor for gluconate and glutamate production. Journal of Biotechnology, 1996, 50, 27-36.	3.8	18
69	Biotransformation from geraniol to nerol by immobilized grapevine cells (V. vinifera). Applied Biochemistry and Biotechnology, 1996, 56, 169-180.	2.9	16
70	Comparative thermostability of glucose dehydrogenase from Haloferax mediterranei. Effects of salts and polyols. Enzyme and Microbial Technology, 1996, 19, 352-360.	3.2	38
71	Stability of immobilized ?-chymotrypsin in supercritical carbon dioxide. Biotechnology Letters, 1996, 18, 1345-1350.	2.2	37
72	pH influence on the consumption of limonin species by Rhodococcus fascians cells. Biotechnology Letters, 1996, 18, 423-428.	2.2	7

#	Article	IF	CITATIONS
73	Influence of Water-Miscible Aprotic Solvents on α-Chymotrypsin Stability. Biotechnology Progress, 1996, 12, 488-493.	2.6	23
74	Peptide Synthesis by Papain in Alkali Halide Media. Biocatalysis and Biotransformation, 1996, 13, 255-269.	2.0	2
75	A model that links growth and secondary metabolite production in plant cell suspension cultures. Biotechnology and Bioengineering, 1995, 46, 291-297.	3.3	32
76	Effect of water-miscible aprotic solvents on kyotorphin synthesis catalyzed by immobilized ?-chymotrypsin. Biotechnology Letters, 1995, 17, 603-608.	2.2	26
77	A practical experiment on enzyme immobilization and characterization of the immobilized derivatives. Biochemical Education, 1995, 23, 213-216.	0.1	11
78	Enhanced accumulation of anthocyanins in Vitis vinifera cells immobilized in polyurethane foam. Enzyme and Microbial Technology, 1994, 16, 416-419.	3.2	12
79	Food Protein Nutrient Improvement by Protease at Reduced Water Activity. Journal of Food Science, 1994, 59, 876-880.	3.1	4
80	Effect of polyols on α-chymotrypsin thermostability: a mechanistic analysis of the enzyme stabilization. Journal of Biotechnology, 1994, 35, 9-18.	3.8	88
81	Optimization of the start-up of a passively immobilized Zymomonas mobilis system for continuous ethanol production. Process Biochemistry, 1994, 29, 569-574.	3.7	1
82	Analysis of a packed-bed reactor for hydrolysis of picrocrocin by immobilized β-glucosidase. Enzyme and Microbial Technology, 1993, 15, 780-784.	3.2	15
83	Influence of polyhydroxylic cosolvents on papain thermostability. Enzyme and Microbial Technology, 1993, 15, 868-873.	3.2	17
84	Preparative high-performance liquid chromatographic purification of saffron secondary metabolites. Journal of Chromatography A, 1993, 648, 187-190.	3.7	45
85	Synthesis of L-tyrosine glyceryl ester catalyzed by α-chymotrypsin in water-miscible organic solvents: A possible sun-tan accelerator product. Biotechnology Letters, 1993, 15, 1223-1228.	2.2	7
86	Thermostability of immobilized plant microsomes. Biotechnology Letters, 1993, 15, 1129-1132.	2.2	2
87	Comparative study of reactor performance for the resolution of d,l-amino acids. Process Biochemistry, 1992, 27, 339-346.	3.7	2
88	One-step synthesis of Gly-Gly-PheNH2 from N-unprotected amino acid derivatives by papain in one-phase liquid media. Biotechnology Letters, 1992, 14, 933-936.	2.2	10
89	Picrocrocin hydrolysis by immobilized ?-glucosidase. Biotechnology Letters, 1992, 14, 475-480.	2.2	24
90	TLC Preparative Purification of Picrocrocin, HTCC and Crocin from Saffron. Journal of Food Science, 1992, 57, 714-716.	3.1	71

#	Article	IF	CITATIONS
91	Properties of pectinesterase and endo-d-polygalacturonase coimmobilized in a porous glass support. Applied Biochemistry and Biotechnology, 1992, 37, 19-31.	2.9	7
92	2,3,5-triphenyltetrazolium chloride as a viability assay for immobilized plant cells. Biotechnology Letters, 1992, 6, 319-322.	0.5	30
93	Short-chain flavour ester synthesis by immobilized lipase in organic media. Biotechnology Letters, 1991, 13, 339-344.	2.2	105
94	Characteristics of the immobilized pectin lyase activity from a commercial pectolytic enzyme preparation. Acta Biotechnologica, 1990, 10, 531-539.	0.9	14
95	Degradation of isovalerate and 2-methylbutyrate in an anaerobic trickling filter. Biological Wastes, 1990, 34, 241-250.	0.2	7
96	Kinetic and operational study of a cross-flow reactor with immobilized pectolytic enzymes. Enzyme and Microbial Technology, 1990, 12, 499-505.	3.2	27
97	Methanogenic biofilm growth studies in an anaerobic fixed-film reactor. Enzyme and Microbial Technology, 1990, 12, 387-394.	3.2	4
98	Properties of pectinesterase immobilized on glycophase-coated controlled-pore glass. Applied Biochemistry and Biotechnology, 1989, 22, 129-140.	2.9	20
99	Optimization of the pectinesterase/endo-d-polygalacturonase coimmobilization process. Enzyme and Microbial Technology, 1989, 11, 837-843.	3.2	17
100	Degradation of limonin by entrappedRhodococcus fascians cells. Biotechnology Letters, 1989, 11, 653-658.	2.2	23
101	Stability against stop of flow of an immobilizedZymomonas mobilis bioreactor. Biotechnology Letters, 1989, 11, 665-668.	2.2	2
102	pH influence on ethanol production and retained biomass in a passively immobilizedZymomonas mobilis system. Biotechnology Letters, 1988, 10, 437-442.	2.2	6
103	Synergistic effect of endo-D-polygalacturonase on coimmobilized pectinesterase. Biotechnology Letters, 1988, 10, 97-100.	2.2	6
104	Anaerobic digestion: A case study. Biochemical Education, 1988, 16, 82-84.	0.1	0
105	The existence of apotyrosinase in the cytosol of Harding-Passey mouse melanoma melanocytes and characteristics of enzyme reconstitution by Cu(II). Biochimica Et Biophysica Acta - General Subjects, 1987, 923, 413-420.	2.4	16
106	Activity of soluble and immobilized hesperidinase on insoluble hesperidin. Biotechnology Letters, 1987, 9, 871-874.	2.2	11
107	A cross-flow reactor with immobilized pectolytic enzymes for juice clarification. Biotechnology Letters, 1987, 9, 875-880.	2.2	31
108	Effect of temperature and long-term operation on passively immobilizedZymomonas mobilis for continuous ethanol production. Biotechnology Letters, 1987, 9, 573-576.	2.2	6

#	Article	IF	CITATIONS
109	Effect of ethanol addition on propionic acid consumption in an anaerobic bioreactor. Biotechnology Letters, 1987, 9, 807-810.	2.2	4
110	Evaluation of the effectiveness factor along immobilized enzyme fixed-bed reactors: Design of a reactor with naringinase covalently immobilized into glycophase-coated porous glass. Biotechnology and Bioengineering, 1987, 30, 491-497.	3.3	28
111	A visual-practical method for following the immobilization of biomolecules. Biochemical Education, 1987, 15, 85-86.	0.1	2
112	Comparative study of tyrosinases from different sources: Relationship between halide inhibition and the enzyme active site. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1986, 83, 633-636.	0.2	15
113	Study of α-methyldopa oxidation by tyrosinase. International Journal of Biochemistry & Cell Biology, 1986, 18, 39-47.	0.5	15
114	Irreversible inhibition of trypsin by tlck. A continuous method for kinetic study of irreversible enzymatic inhibitors in the presence of substrate. International Journal of Biochemistry & Cell Biology, 1986, 18, 285-288.	0.5	12
115	Kinetics and stoichiometry of cysteinyldopa formation in the first steps of melanogenesis. International Journal of Biochemistry & Cell Biology, 1986, 18, 161-166.	0.5	7
116	Analysis of diffusion effects on immobilized enzymes on porous supports with reversible Michaelis-Menten kinetics. Enzyme and Microbial Technology, 1986, 8, 433-438.	3.2	24
117	Immobilization of naringinase on glycophase-coated porous glass. Biotechnology Letters, 1985, 7, 477-482.	2.2	38
118	Chemical intermediates in α-methylnoradrenaline oxidation by tyrosinase—l. Spectral properties and stoichiometry. International Journal of Biochemistry & Cell Biology, 1985, 17, 885-890.	0.5	4
119	Chemical intermediates in α-methylnoradrenaline oxidation by tyrosinase—II. Kinetic study of process. International Journal of Biochemistry & Cell Biology, 1985, 17, 891-894.	0.5	4
120	Regulation of the cytosolic and melanosome-bound tyrosinase activities in harding-passey mouse melanoma. International Journal of Biochemistry & Cell Biology, 1985, 17, 995-1002.	0.5	7
121	A method for assaying the rhamnosidase activity of naringinase. Analytical Biochemistry, 1985, 149, 566-571.	2.4	104
122	Microcomputer-based question bank for training and assessment in biochemistry. Biochemical Education, 1984, 12, 108-111.	0.1	3
123	Conformational studies of soluble and immobilized frog epidermis tyrosinase by fluorescence. Applied Biochemistry and Biotechnology, 1984, 9, 173-185.	2.9	7
124	Kinetic study of the interaction between frog epidermis tyrosinase and chloride. BBA - Proteins and Proteomics, 1984, 788, 327-332.	2.1	15
125	Kinetic study on the slow inhibition of epidermis tyrosinase by m-coumaric acid. BBA - Proteins and Proteomics, 1984, 790, 101-107.	2.1	20
126	Tyrosine hydroxylase activity of immobilized tyrosinase on enzacryl-AA and CPG-AA supports: Stabilization and properties. Biotechnology and Bioengineering, 1984, 26, 1306-1312.	3.3	58

Jose Luis Iborra

#	Article	IF	CITATIONS
127	Incorporation of bovine thyroid peroxidase in liposomes. Chemistry and Physics of Lipids, 1984, 34, 237-244.	3.2	3
128	Chemical intermediates in dopamine oxidation by tyrosinase, and kinetic studies of the process. Archives of Biochemistry and Biophysics, 1984, 235, 438-448.	3.0	94
129	Kinetic study and intermediates identification of noradrenaline oxidation by tyrosinase. Biochemical Pharmacology, 1984, 33, 3689-3697.	4.4	25
130	Acid proteinase activity in fish—I. Comparative study of extraction of cathepsins B and D from Mujil auratus. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1984, 78, 203-206.	0.2	7
131	Acid proteinase activity in fish II. Purification and characterization of cathepsins B and D from Mujil auratus muscle. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1984, 78, 207-213.	0.2	10
132	Non-proteolytic solubilization of bovine thyroid peroxidase: Thermodynamic parameters of the thermoinactivation. International Journal of Biochemistry & Cell Biology, 1983, 15, 95-103.	0.5	0
133	Steady-state kinetics of thyroid peroxidase. evidence for a high degree rate equation using the f statistic. International Journal of Biochemistry & Cell Biology, 1983, 15, 1195-1200.	0.5	1
134	Kinetic study of the pathway of melanizationn between l-dopa and dopachrome. Biochimica Et Biophysica Acta - General Subjects, 1982, 717, 124-131.	2.4	96
135	Quantitative determination of tryptophanyl and tyrosyl residues of proteins by second-derivative fluorescence spectroscopy. Analytical Biochemistry, 1982, 125, 277-285.	2.4	24