## Valentin Suslyaev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7629436/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Co/multi-walled carbon nanotubes/polyethylene composites for microwave absorption: Tuning the<br>effectiveness of electromagnetic shielding by varying the components ratio. Composites Science and<br>Technology, 2021, 207, 108731. | 3.8 | 27        |
| 2  | An investigation of electromagnetic response of composite polymer materials containing carbon<br>nanostructures within the range of frequencies 10 MHz – 1.1 THz. Russian Physics Journal, 2013, 55,<br>970-976.                      | 0.2 | 26        |
| 3  | Correlation between manufacturing processes and anisotropic magnetic and electromagnetic properties of carbon nanotube/polystyrene composites. Composites Part B: Engineering, 2016, 91, 505-512.                                     | 5.9 | 26        |
| 4  | Electrophysical and Electromagnetic Properties of Pure MWNTs and MWNT/PMMA Composite<br>Materials Depending on Their Structure. Fullerenes Nanotubes and Carbon Nanostructures, 2010, 18,<br>505-515.                                 | 1.0 | 25        |
| 5  | Structural and Physical Properties of MWNT/Polyolefine Composites. Fullerenes Nanotubes and Carbon Nanostructures, 2012, 20, 510-518.                                                                                                 | 1.0 | 25        |
| 6  | Investigation of electromagnetic properties of MWCNT aerogels produced via catalytic ethylene decomposition. Physica Status Solidi (B): Basic Research, 2015, 252, 2519-2523.                                                         | 0.7 | 23        |
| 7  | Effect of fabrication method on the structure and electromagnetic response of carbon<br>nanotube/polystyrene composites in low-frequency and Ka bands. Composites Science and Technology,<br>2014, 102, 59-64.                        | 3.8 | 22        |
| 8  | Comparative study of multiwalled carbon nanotube/polyethylene composites produced via different techniques. Physica Status Solidi (B): Basic Research, 2014, 251, 2437-2443.                                                          | 0.7 | 21        |
| 9  | Terahertz dielectric properties of multiwalled carbon nanotube/polyethylene composites. Materials<br>Research Express, 2017, 4, 106201.                                                                                               | 0.8 | 21        |
| 10 | Structural and magnetic properties of SHS-produced multiphase W-Type hexaferrites: Influence of radiation-thermal treatment. International Journal of Self-Propagating High-Temperature Synthesis, 2015, 24, 148-151.                 | 0.2 | 20        |
| 11 | Radiation-thermal synthesis of W-type hexaferrites. IOP Conference Series: Materials Science and Engineering, 2015, 81, 012003.                                                                                                       | 0.3 | 18        |
| 12 | Structure and static and dynamic magnetic properties of Sr(Co x Ti x )Fe12–2x O19 hexaferrites produced by self-propagating high-temperature synthesis. Russian Physics Journal, 2013, 55, 869-877.                                   | 0.2 | 14        |
| 13 | Composite radio-absorbing material based on carbonyl iron for millimeter wavelength range. Russian<br>Physics Journal, 2011, 53, 874-876.                                                                                             | 0.2 | 13        |
| 14 | Iron-filled multi-walled carbon nanotubes for terahertz applications: effects of interfacial polarization, screening and anisotropy. Nanotechnology, 2018, 29, 174003.                                                                | 1.3 | 11        |
| 15 | Electrical Properties of Carbon Foam in the Microwave Range. Russian Physics Journal, 2017, 59,<br>1703-1709.                                                                                                                         | 0.2 | 9         |
| 16 | Structure parameters and magnetic properties of Me2W1 cobalt-containing hexaferrite systems synthesized by the SHS method. Russian Physics Journal, 2011, 53, 974-982.                                                                | 0.2 | 7         |
| 17 | Interaction of microwave radiation with composites containing nanosized hexaferrite, multiferroics, carbon nanostructures and silicon binder. International Journal of Nanotechnology, 2015, 12, 200.                                 | 0.1 | 7         |
| 18 | Electrophysical and Thermophysical Characteristics of a Multifunctional Composite Polyurethane-Based Material. Russian Physics Journal, 2014, 57, 1094-1098.                                                                          | 0.2 | 5         |

VALENTIN SUSLYAEV

| #  | Article                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Small-sized body influence on the quality factor increasing of quasioptical open resonator. Optical and Quantum Electronics, 2017, 49, 1.                                             | 1.5 | 5         |
| 20 | Dielectric Properties of Marsh Vegetation in a Frequency Range of 0.1–18 GHz Under Variation of Temperature and Moisture. Russian Physics Journal, 2017, 60, 803-811.                 | 0.2 | 5         |
| 21 | Physical Characteristics of Foam Glass Modified with Zirconium Dioxide. Russian Physics Journal, 2017, 59, 2130-2136.                                                                 | 0.2 | 5         |
| 22 | Title is missing!. Instruments and Experimental Techniques, 2003, 46, 672-676.                                                                                                        | 0.1 | 4         |
| 23 | Dielectric Permittivity of Polymer Composites with Encapsulated Liquid Crystals in Strong Electric<br>Fields. Russian Physics Journal, 2013, 56, 902-907.                             | 0.2 | 4         |
| 24 | Porous material for protection from electromagnetic radiation. , 2014, , .                                                                                                            |     | 4         |
| 25 | Electrophysical Characteristics of a Foam Glass Crystal Material. Russian Physics Journal, 2014, 56,<br>990-996.                                                                      | 0.2 | 4         |
| 26 | Radioabsorbing Materials Based on Polyurethane with Carbon Fillers. Advanced Materials Research, 0,<br>1040, 137-141.                                                                 | 0.3 | 4         |
| 27 | Characterization of porous glass-ceramic material as absorber of electromagnetic radiation. IOP<br>Conference Series: Materials Science and Engineering, 2015, 81, 012036.            | 0.3 | 4         |
| 28 | Comparative Analysis of Electromagnetic Response of PVA/MWCNT and Styrene-Acrylic<br>Copolymer/MWCNT Composites. Russian Physics Journal, 2016, 59, 278-283.                          | 0.2 | 4         |
| 29 | Magnetic studies of polystyrene/iron-filled multi-wall carbon nanotube composite films. Journal of<br>Magnetism and Magnetic Materials, 2016, 415, 51-56.                             | 1.0 | 4         |
| 30 | Magnetic permeability spectra of nanosized powders of hexaferrites. Journal of Structural Chemistry, 2004, 45, S103-S105.                                                             | 0.3 | 3         |
| 31 | Investigation of dynamic magnetic characteristics of composite mixes based on hexaferrite nanopowders. Russian Physics Journal, 2008, 51, 986-993.                                    | 0.2 | 3         |
| 32 | Electrophysical Properties of Composites Based on Atactic Polypropylene. Russian Physics Journal, 2014, 57, 306-311.                                                                  | 0.2 | 2         |
| 33 | Computer simulation of processes of radiation-thermal heating. IOP Conference Series: Materials<br>Science and Engineering, 2015, 81, 012054.                                         | 0.3 | 2         |
| 34 | Effective magnetic permeability of a composite material based on nanoscale hexaferrite particles.<br>International Journal of Nanotechnology, 2015, 12, 192.                          | 0.1 | 2         |
| 35 | Effect of magnetic field treatment on the electromagnetic properties of polymer composite based on barium hexaferrite at microwave frequencies. AIP Conference Proceedings, 2016, , . | 0.3 | 2         |
| 36 | Analysis of Mechanical and Thermogravimetric Properties of Composite Materials Based on PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT. Russian Physics Journal, 2017, 60, 717-722.    | 0.2 | 2         |

VALENTIN SUSLYAEV

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Electromagnetic response of the three-layer construction on the basis of barium hexaferrite and a foam glass. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012099.                                            | 0.3 | 2         |
| 38 | The effect of volume inclusions of the ZnGeP2 single-crystal on the dispersion of the refraction index and the absorption coefficient in mid-IR and terahertz ranges of wavelengths. Optical Materials, 2021, 111, 110662.            | 1.7 | 2         |
| 39 | Use of an irregular microstrip resonator to investigate microwave properties of dielectrics with broad conductivity ranges. Measurement Techniques, 1992, 35, 992-994.                                                                | 0.2 | 1         |
| 40 | Dielectric properties of marsh vegetation. Proceedings of SPIE, 2015, , .                                                                                                                                                             | 0.8 | 1         |
| 41 | The foam-glass material for a radio frequency echoless chambers. IOP Conference Series: Materials<br>Science and Engineering, 2016, 110, 012086.                                                                                      | 0.3 | 1         |
| 42 | SHS-produced Co2+Ti4+-doped barium and strontium hexaferrites: Static and dynamic magnetic properties. International Journal of Self-Propagating High-Temperature Synthesis, 2016, 25, 203-209.                                       | 0.2 | 1         |
| 43 | Properties of Polydisperse Tin-doped Dysprosium and Indium Oxides. MATEC Web of Conferences, 2017, 96, 00010.                                                                                                                         | 0.1 | 1         |
| 44 | The electromagnetic characteristics of the composites based on hexaferrites and MCNT at gigahertz and terahertz                                                                                                                       |     | 1         |
| 45 | A composite material with controllable electromagnetic characteristics for the terahertz frequency range. Journal of Applied Physics, 2022, 131, 064103.                                                                              | 1.1 | 1         |
| 46 | Research of Electromagnetic Properties of Composite Materials on the Basis of MWNTs in Microwave<br>Range. Advanced Materials Research, 2014, 1040, 142-147.                                                                          | 0.3 | 0         |
| 47 | Electromagnetic Characteristics of Thin Polyethylene-Carbon-Polyethylene Films. Russian Physics<br>Journal, 2015, 58, 629-634.                                                                                                        | 0.2 | 0         |
| 48 | Electromagnetic properties of LaCa3Fe5Oi2in the microwave range. IOP Conference Series: Materials<br>Science and Engineering, 2016, 110, 012106.                                                                                      | 0.3 | 0         |
| 49 | Analysis and reoperation of the magnetic permeability spectra of textured composite based on Z-type<br>hexaferrite by using Cramers-Kronig relations. IOP Conference Series: Materials Science and<br>Engineering, 2017, 168, 012072. | 0.3 | Ο         |
| 50 | Electromagnetic Characteristics of Composite Coatings with ITO Filler. Russian Physics Journal, 2017, 59, 1515-1517.                                                                                                                  | 0.2 | 0         |
| 51 | Electrophysical characteristics of water of the rivers of Siberia and Altai. Proceedings of SPIE, 2016, , .                                                                                                                           | 0.8 | Ο         |
| 52 | Quasi-optical 2D system for non-contact non-destructive testing of defects in natural and artificial crystals. , 2017, , .                                                                                                            |     | 0         |
| 53 | Evaluation of the possibility of using remote methods for the classification of water sources for specific electrical conductivity. , 2018, , .                                                                                       |     | 0         |
| 54 | Spectral characteristics of the pyroelectric detector sensitivity based on tetraaminodiphenyl in visible, IR and THz-ranges. Proceedings of the Russian Higher School Academy of Sciences, 2019, , 57-69.                             | 0.1 | 0         |