
Yang-Cheng Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7629410/publications.pdf Version: 2024-02-01

YANG-CHENCLU

#	Article	IF	CITATIONS
1	Photoiodization of toluene in a microflow platform. Journal of Flow Chemistry, 2022, 12, 41-49.	1.2	0
2	Flexible and Effective Preparation of Magnetic Nanoclusters via One-Step Flow Synthesis. Nanomaterials, 2022, 12, 350.	1.9	5
3	How the substrate affects amination reaction kinetics of nitrochlorobenzene. Reaction Chemistry and Engineering, 2022, 7, 833-838.	1.9	1
4	How Does Ion Exchange Construct Binary Hexacyanoferrate? A Case Study. ACS Omega, 2022, 7, 9666-9673.	1.6	0
5	Direct Continuous Synthesis of Oleic Acid-Modified Fe ₃ O ₄ Nanoparticles in a Microflow System. Industrial & Engineering Chemistry Research, 2022, 61, 4320-4328.	1.8	8
6	Homogeneous synthesis of hydroxyethyl acrylate catalyzed by organochromium(III) complexes: Kinetics and ligand effect. Chemical Engineering Journal, 2022, 440, 135804.	6.6	5
7	Living cationic polymerization of isobutylene in seconds based on microflow system. European Polymer Journal, 2022, 174, 111335.	2.6	3
8	Living Copolymerization of EOVE and MOVE: Fast Flow Synthesis and Thermal Responsive Behavior. Chinese Journal of Polymer Science (English Edition), 2022, 40, 1193-1200.	2.0	2
9	Rapid synthesis of sodium-rich Prussian white for Sodium-ion battery via a bottom-up approach. Chemical Engineering Journal, 2021, 405, 126688.	6.6	16
10	Intensifying fine-grained fluorite flotation process with a combination of in-situ modification and liquid-gas microdispersion. Separation and Purification Technology, 2021, 257, 117982.	3.9	4
11	Continuous nitration of o-dichlorobenzene in micropacked-bed reactor: process design and modelling. Journal of Flow Chemistry, 2021, 11, 171-179.	1.2	14
12	Interpretation on a Nonclassical Crystallization Route of Prussian White Nanocrystal Preparation. Crystal Growth and Design, 2021, 21, 1086-1092.	1.4	10
13	A highly controllable, effective, and recyclable magnetic-nanoparticle-supported palladium catalyst for the Suzuki–Miyaura cross-coupling reaction. Journal of Catalysis, 2021, 397, 36-43.	3.1	9
14	Facile synthesis and cycling performance maintenance of iron hexacyanoferrate cathode for sodium-ion battery. Journal of Power Sources, 2021, 513, 230554.	4.0	9
15	Enhancing the amination reaction of 4-nitrochlorobenzene in a tubular reactor. Chemical Engineering and Processing: Process Intensification, 2021, 169, 108636.	1.8	3
16	Understanding the effects of nucleophiles in fast living cationic polymerisation of isobutyl vinyl ether in a microflow system from stability and activity of propagating chains. Polymer Chemistry, 2021, 12, 2542-2550.	1.9	1
17	An intensified chlorination process of 4-nitroaniline in a liquid–liquid microflow system. Reaction Chemistry and Engineering, 2021, 6, 2259-2265.	1.9	3
18	Homogeneous synthesis of hydroxylamine hydrochloride <i>via</i> acid-catalyzed hydrolysis of nitromethane. Reaction Chemistry and Engineering, 2020, 5, 387-394.	1.9	6

#	Article	IF	CITATIONS
19	Construction of dual-function carbon materials network towards high performance MnCO3 anode via nanoprecipitation process. Electrochimica Acta, 2020, 358, 136930.	2.6	0
20	Toward Uniform In Situ Carbon Coating on Nano-LiFePO ₄ via a Solid-State Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 13549-13555.	1.8	16
21	Tailoring morphology and bulk density of magnesium ethoxide particles by adding n-hexane and silicone oil. Particuology, 2020, 53, 168-174.	2.0	2
22	Tailoring the AlCl ₃ /iPr ₂ O/Et ₂ O initiation system for highly reactive polyisobutylene synthesis in pure <i>n</i> hexane. RSC Advances, 2020, 10, 5183-5190.	1.7	6
23	Precise synthesis of poly(IBVE-co-HBVE) with tunable thermo-response via fast flow polymerization. Polymer, 2020, 190, 122223.	1.8	6
24	Amorphous FePO4/Carbon Nanotube Cathode Preparation via in Situ Nanoprecipitation and Coagulation in a Microreactor. ACS Omega, 2019, 4, 14790-14799.	1.6	11
25	Fast living cationic polymerization of isobutyl vinyl ether tailored by single nucleophile in microflow system. European Polymer Journal, 2019, 113, 220-228.	2.6	9
26	Numerical simulation and experimental investigation of multiphase mass transfer process for industrial applications in China. Reviews in Chemical Engineering, 2019, 36, 187-214.	2.3	3
27	Tailoring Emulsion Polymerization for High-Yield Synthesis of Tween 80 Stabilized Magnetic Cross-Linked Polystyrene Nanocomposite Particles. Industrial & Engineering Chemistry Research, 2019, 58, 8140-8147.	1.8	4
28	LiNi0.5Mn1.5O4 microrod with ultrahigh Mn3+ content: A high performance cathode material for lithium ion battery. Electrochimica Acta, 2019, 305, 433-442.	2.6	34
29	Facile Construction of High-Performance Amorphous FePO ₄ /Carbon Nanomaterials as Cathodes of Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 13225-13233.	4.0	28
30	A Comparative Study on Emulsion Polymerization Processes of Styrene Initiated by Water-soluble and Oil-soluble Initiators. Chinese Journal of Polymer Science (English Edition), 2019, 37, 142-148.	2.0	4
31	A comparative electrochemical investigation and an effective promotion towards electrochemical performance of MnCO3 aggregates. Chemical Engineering Journal, 2019, 360, 553-561.	6.6	20
32	Highly efficient and flexible preparation of water-dispersed Fe3O4 nanoclusters using a micromixer. Particuology, 2019, 45, 42-48.	2.0	7
33	Effects of Ether on the Cationic Polymerization of Isobutylene Catalyzed by AlCl ₃ . ACS Omega, 2018, 3, 2033-2039.	1.6	11
34	Effects on the mixing process of a coiled tube after a T-junction: Simulation and correlation. Chinese Journal of Chemical Engineering, 2018, 26, 2441-2447.	1.7	8
35	Thermal Decomposition of Ethyl Diazoacetate in Microtube Reactor: A Kinetics Study. ACS Omega, 2018, 3, 10526-10533.	1.6	4
36	Achieving Low-Cost and Accelerated Living Cationic Polymerization of Isobutyl Vinyl Ether in Microflow System. Industrial & Engineering Chemistry Research, 2018, 57, 7441-7449.	1.8	10

#	Article	IF	CITATIONS
37	Synthesis of polystyrene latex via emulsion polymerization with poly(vinyl alcohol) as sole stabilizer. Journal of Applied Polymer Science, 2017, 134, 45111.	1.3	13
38	Micromixing enhanced synthesis of HRPIBs catalyzed by EADC/bis(2-chloroethyl)ether complex. RSC Advances, 2017, 7, 27629-27636.	1.7	19
39	Synthesis of Micro–Nano-assembled Manganese Carbonate via Aqueous Precipitation Assisted by Ethanol. Industrial & Engineering Chemistry Research, 2017, 56, 10036-10043.	1.8	16
40	Continuous Flow Synthesis of Polystyrene Nanoparticles via Emulsion Polymerization Stabilized by a Mixed Nonionic and Anionic Emulsifier. Industrial & Engineering Chemistry Research, 2017, 56, 9489-9495.	1.8	22
41	Effects of temperature and phosphoric acid addition on the solubility of iron phosphate dihydrate in aqueous solutions. Chinese Journal of Chemical Engineering, 2017, 25, 211-215.	1.7	17
42	Synthesis of epichlorohydrin from 1,3-dichloropropanol using solid base. Chinese Journal of Chemical Engineering, 2017, 25, 301-305.	1.7	5
43	Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres. Crystals, 2016, 6, 156.	1.0	2
44	Back Extraction of HCl from TOA Dissolved in N-Octanol by Aqueous Ammonia in a Microchannel Device. Solvent Extraction and Ion Exchange, 2016, 34, 60-73.	0.8	4
45	Construction of a cathode using amorphous FePO 4 nanoparticles for a high-power/energy-density lithium-ion battery with long-term stability. Journal of Power Sources, 2016, 324, 52-60.	4.0	34
46	Kinetic study on selective extraction of HCl and H3PO4 in a microfluidic device. Chinese Journal of Chemical Engineering, 2016, 24, 221-225.	1.7	14
47	Cationic polymerization of isobutylene catalysed by AlCl ₃ with multiple nucleophilic reagents. RSC Advances, 2016, 6, 97983-97989.	1.7	12
48	Flow synthesis of medium molecular weight polyisobutylene coinitiated by AlCl3. European Polymer Journal, 2016, 80, 219-226.	2.6	14
49	Generation of Poly(isobutene- <i>co</i> -isoprene) in a Microflow Device. Industrial & Engineering Chemistry Research, 2016, 55, 1215-1220.	1.8	7
50	Fast flow synthesis of highly reactive polyisobutylene co-initiated by an AlCl ₃ /isopropyl ether complex. RSC Advances, 2016, 6, 9827-9834.	1.7	17
51	Simulation of the mixing process in a straight tube with sudden changed cross-section. Chinese Journal of Chemical Engineering, 2016, 24, 711-718.	1.7	19
52	Relationship between breakthrough curve and adsorption isotherm of Ca(II) imprinted chitosan microspheres for metal adsorption. Chinese Journal of Chemical Engineering, 2016, 24, 323-329.	1.7	3
53	Kinetics study of acrylic acid polymerization with a microreactor platform. Chemical Engineering Journal, 2016, 284, 233-239.	6.6	30
54	A consecutive microreactor system for the synthesis of caprolactam with high selectivity. AICHE Journal, 2015, 61, 1959-1967.	1.8	16

#	Article	IF	CITATIONS
55	Gas/liquid/liquid threeâ€phase flow patterns and bubble/droplet size laws in a double Tâ€ j unction microchannel. AICHE Journal, 2015, 61, 1722-1734.	1.8	27
56	Modeling ethyl diazoacetate synthesis in an adiabatic microchemical system. Chemical Engineering Journal, 2015, 273, 406-412.	6.6	6
57	Evaluation of an improved epichlorohydrin synthesis from dichloropropanol using a microchemical system. Chinese Journal of Chemical Engineering, 2015, 23, 1123-1130.	1.7	11
58	Continuous Removal of Lead from Aqueous Solutions by Ca(II) Imprinted Chitosan Microspheres Packed Column. Separation Science and Technology, 2015, 50, 1127-1134.	1.3	3
59	Modeling of kinetics of a microfluidic reaction–extraction process for the preparation of KH 2 PO 4. Separation and Purification Technology, 2015, 156, 108-115.	3.9	7
60	Strategy for Scalingâ€up of a Microsieve Dispersion Reactor. Chemical Engineering and Technology, 2014, 37, 2116-2122.	0.9	42
61	Solubility of KH2PO4 in KCl, H3PO4, and Their Mixture Solutions. Journal of Chemical & Engineering Data, 2014, 59, 439-443.	1.0	21
62	Beckmann Rearrangement of Cyclohexanone Oxime to Îμ-Caprolactam in a Modified Catalytic System of Trifluoroacetic Acid. Catalysis Letters, 2014, 144, 151-157.	1.4	26
63	Ca(II) imprinted chitosan microspheres: An effective and green adsorbent for the removal of Cu(II), Cd(II) and Pb(II) from aqueous solutions. Chemical Engineering Journal, 2014, 244, 202-208.	6.6	189
64	A Novel Method of Fabricating, Adjusting, and Optimizing Polystyrene Colloidal Crystal Nonspherical Microparticles from Gas–Water Janus Droplets in a Double Coaxial Microfluidic Device. Crystal Growth and Design, 2014, 14, 401-405.	1.4	26
65	Modified nanoprecipitation method for polysulfone nanoparticles preparation. Soft Matter, 2014, 10, 3414.	1.2	17
66	Synthesis of Hierarchical Iron Hydrogen Phosphate Crystal as a Robust Peroxidase Mimic for Stable H ₂ O ₂ Detection. ACS Applied Materials & Interfaces, 2014, 6, 14433-14438.	4.0	69
67	Liquid–liquid microflows and mass transfer performance in slit-like microchannels. Chemical Engineering Journal, 2014, 258, 34-42.	6.6	40
68	Direct Precipitation for a Continuous Synthesis of Nanoiron Phosphate with High Purity. Industrial & Engineering Chemistry Research, 2014, 53, 6723-6729.	1.8	13
69	Preparation of Li ₂ CO ₃ Nanoparticles by Carbonation Reaction Using a Microfiltration Membrane Dispersion Microreactor. Industrial & Engineering Chemistry Research, 2014, 53, 11015-11020.	1.8	26
70	Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device. Lab on A Chip, 2014, 14, 1357.	3.1	35
71	Intensification of fast exothermic reaction by gas agitation in a microchemical system. AICHE Journal, 2014, 60, 2724-2730.	1.8	51
72	Microdroplet coalescences at microchannel junctions with different collision angles. AICHE Journal, 2013, 59, 643-649.	1.8	45

#	Article	IF	CITATIONS
73	Free radical polymerization of butyl acrylate in monodispersed droplets: Comparison between two heating strategies. Journal of Applied Polymer Science, 2013, 127, 628-635.	1.3	11
74	Novel One-Step Synthesis Process from Cyclohexanone to Caprolactam in Trifluoroacetic Acid. Industrial & Engineering Chemistry Research, 2013, 52, 6377-6381.	1.8	30
75	Modeling investigation of mass transfer of gas–liquid concurrent flow processes. Separation and Purification Technology, 2013, 109, 77-86.	3.9	3
76	Generating microbubbles in a co-flowing microfluidic device. Chemical Engineering Science, 2013, 100, 486-495.	1.9	54
77	Coalescences of microdroplets at a cross-shaped microchannel junction without strictly synchronism control. Chemical Engineering Journal, 2013, 227, 90-96.	6.6	30
78	Preparation of highly purified β-tricalcium phosphate ceramics with a microdispersion process. Chemical Engineering Journal, 2013, 221, 55-61.	6.6	21
79	Synthesis of single-crystal dendritic iron hydroxyl phosphate as a Fenton catalyst. CrystEngComm, 2013, 15, 9104.	1.3	13
80	Generation of monodispersed microdroplets by temperature controlled bubble condensation processes. Lab on A Chip, 2013, 13, 73-76.	3.1	13
81	Extraction-Derived Self-Organization of Colloidal Photonic Crystal Particles within Confining Aqueous Droplets. Crystal Growth and Design, 2013, 13, 926-935.	1.4	29
82	Modeling investigation of mass transfer of gas–liquid–liquid dispersion systems. Separation and Purification Technology, 2013, 108, 111-118.	3.9	11
83	Process intensification of BaSO4 nanoparticle preparation with agitation of microbubbles. Powder Technology, 2013, 247, 60-68.	2.1	22
84	Preparation of microcapsule-supported Pd catalyst using a microfluidic platform. Chinese Journal of Catalysis, 2013, 34, 1635-1643.	6.9	5
85	Iron Phosphate Prepared by Coupling Precipitation and Aging: Morphology, Crystal Structure, and Cr(III) Adsorption. Crystal Growth and Design, 2013, 13, 1099-1109.	1.4	22
86	An improved synthesis of chitosan bead for Pb(II) adsorption. Chemical Engineering Journal, 2013, 226, 271-278.	6.6	73
87	Size Adjustment of Iron Phosphate Nanoparticles by Using Mixed Acids. Industrial & Engineering Chemistry Research, 2013, 52, 6962-6968.	1.8	12
88	One-step synthesis of pH-sensitive poly(Acrylamide-co-Sodium Acrylate) beads with core–shell structure. Reactive and Functional Polymers, 2013, 73, 122-131.	2.0	8
89	Liquid–Liquid Equilibria for the System Water + 1,3-Dichloro-2-propanol + Epichlorohydrin from (283.2) Tj E	[Qq1_1_0.78 	4314 rgBT /
90	Continuous Ammonium Silicofluoride Ammonification for SiO ₂ Nanoparticles Preparation in a Microchemical System. Industrial & Engineering Chemistry Research, 2013, 52, 5757-5764.	1.8	4

#	Article	IF	CITATIONS
91	Generating Gasâ€Liquidâ€Liquid Threeâ€Phase Microflows in a Crossâ€Junction Microchannel Device. Chemical Engineering and Technology, 2013, 36, 1047-1060.	0.9	26
92	Controllable preparation of uniform polystyrene nanospheres with premix membrane emulsification. Journal of Applied Polymer Science, 2013, 129, 1202-1211.	1.3	6
93	Preparation of FePO4 nano-particles by coupling fast precipitation in membrane dispersion microcontactor and hydrothermal treatment. Chemical Engineering Journal, 2012, 210, 18-25.	6.6	37
94	Porous glass beads as a new adsorbent to remove sulfur-containing compounds. Green Chemistry, 2012, 14, 1009.	4.6	28
95	Controllable Preparation of Polyacrylamide Hydrogel Microspheres in a Coaxial Microfluidic Device. Industrial & Engineering Chemistry Research, 2012, 51, 9016-9022.	1.8	26
96	Chlorohydrination of Allyl Chloride to Dichloropropanol in a Microchemical System. Industrial & Engineering Chemistry Research, 2012, 51, 14685-14691.	1.8	14
97	Determination of kinetic parameters of dehydrochlorination of dichloropropanol in a microreactor. Chemical Engineering Journal, 2012, 203, 142-147.	6.6	41
98	Coupling Process of Oxidation and Extraction in a Gas–Liquid–Liquid Microdispersion System for H ₂ O ₂ Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 1834-1845.	1.8	20
99	Process intensification of catalytic hydrogenation of ethylanthraquinone with gasâ€liquid microdispersion. AICHE Journal, 2012, 58, 1326-1335.	1.8	34
100	Beckmann rearrangement of cyclohexanone oxime in a microchemical system: The role of SO ₃ and product inhibition. AICHE Journal, 2012, 58, 3156-3160.	1.8	17
101	Experimental study of microbubble coalescence in a T-junction microfluidic device. Microfluidics and Nanofluidics, 2012, 12, 715-722.	1.0	30
102	Liquid–liquid microflows in micro-sieve dispersion devices with dual pore size. Microfluidics and Nanofluidics, 2012, 12, 705-714.	1.0	7
103	Mass transfer performance of gas–liquid segmented flow in microchannels. Chemical Engineering Journal, 2012, 181-182, 229-235.	6.6	97
104	Mixing characterization and scaling-up analysis of asymmetrical T-shaped micromixer: Experiment and CFD simulation. Chemical Engineering Journal, 2012, 181-182, 597-606.	6.6	40
105	Mass transfer characteristic in the formation stage of gas–liquid segmented flow in microchannel. Chemical Engineering Journal, 2012, 185-186, 314-320.	6.6	71
106	Liquid–liquid flow and mass transfer characteristics in micro-sieve array device with dual-sized pores. Chemical Engineering Journal, 2012, 193-194, 96-101.	6.6	11
107	An Experimental Study of Liquid-Liquid Microflow Pattern Maps Accompanied with Mass Transfer. Chinese Journal of Chemical Engineering, 2012, 20, 18-26.	1.7	19
108	Preparation and ion exchange properties of egg-shell glass beads with different surface morphologies. Particuology, 2012, 10, 317-326.	2.0	16

#	Article	IF	CITATIONS
109	Beckmann rearrangement in a microstructured chemical system for the preparation of εâ€caprolactam. AICHE Journal, 2012, 58, 925-931.	1.8	36
110	Controllable Preparation of SiO ₂ Nanoparticles Using a Microfiltration Membrane Dispersion Microreactor. Industrial & Engineering Chemistry Research, 2011, 50, 8536-8541.	1.8	34
111	Controllable Preparation of Poly(butyl acrylate) by Suspension Polymerization in a Coaxial Capillary Microreactor. Industrial & Engineering Chemistry Research, 2011, 50, 11853-11862.	1.8	43
112	Controllable preparation of particles with microfluidics. Particuology, 2011, 9, 545-558.	2.0	110
113	Development of a membrane dispersion micro-absorber for CO2 capture. Journal of Membrane Science, 2011, 385-386, 123-131.	4.1	15
114	Preparation and the hydrogenation performance of a novel catalyst-Pd nanoparticles loaded on glass beads with an egg–shell structure. Chemical Engineering Journal, 2011, 173, 226-232.	6.6	38
115	Phase separation of parallel laminar flow for aqueous two phase systems in branched microchannel. Microfluidics and Nanofluidics, 2011, 10, 1079-1086.	1.0	28
116	Droplet generation in micro-sieve dispersion device. Microfluidics and Nanofluidics, 2011, 10, 1087-1095.	1.0	22
117	Kinetics research on fast exothermic reaction between cyclohexanecarboxylic acid and oleum in microreactor. Chemical Engineering Journal, 2011, 169, 290-298.	6.6	59
118	Generation of micromonodispersed droplets and bubbles in the capillary embedded Tâ€ j unction microfluidic devices. AICHE Journal, 2011, 57, 299-306.	1.8	77
119	Development of a gas–liquid microstructured system for oxidation of hydrogenated 2-ethyltetrahydroanthraquinone. Chemical Engineering Journal, 2011, 171, 1406-1414.	6.6	31
120	Process intensification of H2O2 extraction using gas–liquid–liquid microdispersion system. Separation and Purification Technology, 2011, 80, 225-234.	3.9	35
121	Measuring enthalpy of fast exothermal reaction with microâ€reactorâ€based capillary calorimeter. AICHE Journal, 2010, 56, 1045-1052.	1.8	8
122	Absorption and desorption of gaseous toluene by an absorbent microcapsules column. Journal of Hazardous Materials, 2010, 173, 243-248.	6.5	12
123	Generating gas/liquid/liquid three-phase microdispersed systems in double T-junctions microfluidic device. Microfluidics and Nanofluidics, 2010, 8, 813-821.	1.0	36
124	Phase Equilibrium Calculations in Mixtures Containing Caprolactam with a UNIFAC Model. Chinese Journal of Chemical Engineering, 2010, 18, 286-291.	1.7	5
125	Characterization and modeling of micromixing performance in micropore dispersion reactors. Chemical Engineering and Processing: Process Intensification, 2010, 49, 740-747.	1.8	72
126	Liquidâ~'Liquid Equilibria for Benzene + Cyclohexane + 1-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of Chemical & Engineering Data, 2010, 55, 510-512.	1.0	37

#	Article	IF	CITATIONS
127	Preparation of Monodispersed Uniform Silica Spheres with Large Pore Size for Fast Adsorption of Proteins. Industrial & Engineering Chemistry Research, 2010, 49, 4162-4168.	1.8	27
128	Low-temperature bonding of poly-(methyl methacrylate) microfluidic devices under an ultrasonic field. Journal of Micromechanics and Microengineering, 2009, 19, 015035.	1.5	45
129	Preparation of polysulfone microcapsules containing 1-octanol for the recovery of caprolactam. Journal of Microencapsulation, 2009, 26, 104-110.	1.2	20
130	Solubility of Emodin in Alcohols. Chinese Journal of Chemical Engineering, 2009, 17, 251-253.	1.7	6
131	Liquid–liquid micro-dispersion in a double-pore T-shaped microfluidic device. Microfluidics and Nanofluidics, 2009, 6, 557-564.	1.0	13
132	Caprolactam recovery by a column packed with polysulfone microcapsules containing 1-octanol. Separation and Purification Technology, 2009, 69, 71-77.	3.9	7
133	Preparation of Uniform Microcapsules Containing 1-Octanol for Caprolactam Extraction. Industrial & amp; Engineering Chemistry Research, 2009, 48, 4507-4513.	1.8	21
134	Determination of Dynamic Interfacial Tension and Its Effect on Droplet Formation in the T-Shaped Microdispersion Process. Langmuir, 2009, 25, 2153-2158.	1.6	137
135	Controllable preparation of microscale tubes with multiphase co-laminar flow in a double co-axial microdevice. Lab on A Chip, 2009, 9, 3282.	3.1	43
136	PREPARATION OF MICROCAPSULES WITH SILICONE OIL AS CONTINUOUS PHASE USING A SOLVENT EVAPORATION METHOD. Acta Polymerica Sinica, 2009, 007, 775-779.	0.0	1
137	Subcritical Water Treatment: A Simple Method to Prepare Porous Glass with a Core–Shell Structure. Journal of the American Ceramic Society, 2008, 91, 103-109.	1.9	17
138	Separation and concentration of lactic acid by electro-electrodialysis. Separation and Purification Technology, 2008, 60, 308-314.	3.9	36
139	Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method. Frontiers of Chemical Engineering in China, 2008, 2, 204-208.	0.6	13
140	Modeling of the mass transfer and conduction behavior in electro-electrodialysis with oil/water emulsion as the catholyte. Journal of Membrane Science, 2008, 322, 265-274.	4.1	5
141	Preparation of microcapsules containing ionic liquids with a new solvent extraction system. Reactive and Functional Polymers, 2008, 68, 1260-1265.	2.0	46
142	Selection and Evaluation of a New Extractant for Caprolactam Extraction. Chinese Journal of Chemical Engineering, 2008, 16, 876-880.	1.7	10
143	Polysulphone microcapsules containing silicone oil for the removal of toxic volatile organics from water. Journal of Microencapsulation, 2008, 25, 196-202.	1.2	13
144	Improving Selectivity of Temperature-Sensitive Exothermal Reactions with Microreactor. Industrial & Engineering Chemistry Research, 2008, 47, 4683-4688.	1.8	14

#	Article	IF	CITATIONS
145	Heat-Transfer Performance of a Liquidâ~'Liquid Microdispersed System. Industrial & Engineering Chemistry Research, 2008, 47, 9754-9758.	1.8	28
146	Heavy Metal Ion Sorption Properties of Porous Glass Beads with a Coreâ€5hell Structure. Solvent Extraction and Ion Exchange, 2008, 26, 672-685.	0.8	12
147	Intensification of Catalytic Oxidation with a T-junction Microchannel Reactor for Deep Desulfurization. Industrial & Engineering Chemistry Research, 2008, 47, 3870-3875.	1.8	21
148	Preparation of uniform microcapsules with silicone oil as continuous phase in a micro-dispersion process. Journal of Microencapsulation, 2007, 24, 767-776.	1.2	13
149	Catalytic Kinetics of Dibenzothiophene Oxidation with the Combined Catalyst of Quaternary Ammonium Bromide and Phosphotungstic Acid. Industrial & Engineering Chemistry Research, 2007, 46, 6221-6227.	1.8	17
150	Liquidâ^'Liquid Equilibria of the Quaternary System Water + Caprolactam + 1-Octanol + Ammonium Sulfate. Journal of Chemical & Engineering Data, 2007, 52, 851-855.	1.0	12
151	Optimization of Composition of a Directly Combined Catalyst in Dibenzothiophene Oxidation for Deep Desulfurization. Industrial & Engineering Chemistry Research, 2007, 46, 1447-1451.	1.8	59
152	Monodispersed microcapsules enclosing ionic liquid of 1-butyl-3-methylimidazolium hexafluorophosphate. Reactive and Functional Polymers, 2007, 67, 81-86.	2.0	64
153	Distribution Coefficient of Caprolactam and Methyl Caprolactam Using Benzene or Toluene as Extractants: Experiments and Prediction. Chinese Journal of Chemical Engineering, 2007, 15, 463-467.	1.7	8
154	Solubility of Berberine Chloride in Various Solvents. Journal of Chemical & Engineering Data, 2006, 51, 642-644.	1.0	25
155	In situ preparation of magnetic chitosan/Fe3O4 composite nanoparticles in tiny pools of water-in-oil microemulsion. Reactive and Functional Polymers, 2006, 66, 1552-1558.	2.0	192
156	Reducing side product by enhancing mass-transfer rate. AICHE Journal, 2006, 52, 4207-4213.	1.8	30
157	An in situ coupling separation process of electro-electrodialysis with back-extraction. Journal of Membrane Science, 2005, 255, 57-65.	4.1	20
158	Twoâ€Phase Electroâ€Electrodialysis with an Emulsion as Anolyte. Separation Science and Technology, 2005, 39, 1267-1278.	1.3	6
159	Two-phase electro-electrodialysis for recovery and concentration of citric acid. Separation and Purification Technology, 2004, 38, 265-271.	3.9	33
160	Two-phase electrophoresis separation of dyestuffs from dilute solution. Chemical Engineering Journal, 1999, 73, 137-141.	6.6	9