Xiangxue Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/76294/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chemical Society Reviews, 2018, 47, 2322-2356.	18.7	1,438
2	Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environmental Science & Technology, 2016, 50, 7290-7304.	4.6	1,038
3	Ternary NiCo ₂ P <i>_x</i> Nanowires as pHâ€Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. Advanced Materials, 2017, 29, 1605502.	11.1	544
4	Environmental remediation of heavy metal ions by novel-nanomaterials: A review. Environmental Pollution, 2019, 246, 608-620.	3.7	530
5	Recent advances in metal-organic framework membranes for water treatment: A review. Science of the Total Environment, 2021, 800, 149662.	3.9	450
6	Macroscopic and Microscopic Investigation of U(VI) and Eu(III) Adsorption on Carbonaceous Nanofibers. Environmental Science & Technology, 2016, 50, 4459-4467.	4.6	398
7	Recent advances in layered double hydroxide-based nanomaterials for the removal of radionuclides from aqueous solution. Environmental Pollution, 2018, 240, 493-505.	3.7	391
8	Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environmental Pollution, 2019, 252, 62-73.	3.7	348
9	Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760, 143333.	3.9	342
10	Progress in catalyst exploration for heterogeneous CO ₂ reduction and utilization: a critical review. Journal of Materials Chemistry A, 2017, 5, 21625-21649.	5.2	305
11	Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. Environmental Pollution, 2021, 291, 118076.	3.7	304
12	Coagulation Behavior of Graphene Oxide on Nanocrystallined Mg/Al Layered Double Hydroxides: Batch Experimental and Theoretical Calculation Study. Environmental Science & Technology, 2016, 50, 3658-3667.	4.6	270
13	Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Science China Chemistry, 2019, 62, 933-967.	4.2	256
14	Magnetic polydopamine decorated with Mg–Al LDH nanoflakes as a novel bio-based adsorbent for simultaneous removal of potentially toxic metals and anionic dyes. Journal of Materials Chemistry A, 2016, 4, 1737-1746.	5.2	251
15	Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere, 2021, 273, 128576.	4.2	236
16	Synthesis and fabrication of g-C3N4-based materials and their application in elimination of pollutants. Science of the Total Environment, 2020, 731, 139054.	3.9	224
17	Macroscopic, Spectroscopic, and Theoretical Investigation for the Interaction of Phenol and Naphthol on Reduced Graphene Oxide. Environmental Science & Technology, 2017, 51, 3278-3286.	4.6	207
18	Cotton derived carbonaceous aerogels for the efficient removal of organic pollutants and heavy metal ions. Journal of Materials Chemistry A, 2015, 3, 6073-6081.	5.2	205

XIANGXUE WANG

#	Article	IF	CITATIONS
19	β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. Journal of Materials Chemistry A, 2016, 4, 14170-14179.	5.2	191
20	Controllable Synthesis of Ca-Mg-Al Layered Double Hydroxides and Calcined Layered Double Oxides for the Efficient Removal of U(VI) from Wastewater Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 1173-1185.	3.2	187
21	Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides. Journal of Materials Chemistry A, 2016, 4, 5654-5662.	5.2	185
22	Competitive sorption of Pb(II), Cu(II) and Ni(II) on carbonaceous nanofibers: A spectroscopic and modeling approach. Journal of Hazardous Materials, 2016, 313, 253-261.	6.5	169
23	The role of graphene oxide and graphene oxide-based nanomaterials in the removal of pharmaceuticals from aqueous media: a review. Environmental Science and Pollution Research, 2017, 24, 7938-7958.	2.7	164
24	Ultrathin g-C ₃ N ₄ nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation. Environmental Science: Nano, 2018, 5, 1179-1190.	2.2	156
25	Zeolitic imidazolate framework-based nanomaterials for the capture of heavy metal ions and radionuclides: A review. Chemical Engineering Journal, 2021, 406, 127139.	6.6	153
26	Preparation of Molybdenum Disulfide Coated Mg/Al Layered Double Hydroxide Composites for Efficient Removal of Chromium(VI). ACS Sustainable Chemistry and Engineering, 2017, 5, 7165-7174.	3.2	152
27	Recent Advances in Composites of Graphene and Layered Double Hydroxides for Water Remediation: A Review. Chemistry - an Asian Journal, 2019, 14, 2542-2552.	1.7	142
28	Synthesis of layered titanate nanowires at low temperature and their application in efficient removal of U(VI). Environmental Pollution, 2017, 226, 125-134.	3.7	129
29	Plasma-Facilitated Synthesis of Amidoxime/Carbon Nanofiber Hybrids for Effective Enrichment of ²³⁸ U(VI) and ²⁴¹ Am(III). Environmental Science & Technology, 2017, 51, 12274-12282.	4.6	127
30	Ecotoxicological effects and mechanism of CuO nanoparticles to individual organisms. Environmental Pollution, 2017, 221, 209-217.	3.7	125
31	Superior coagulation of graphene oxides on nanoscale layered doubleÂhydroxides and layered double oxides. Environmental Pollution, 2016, 219, 107-117.	3.7	123
32	Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions. Environmental Pollution, 2018, 242, 1-11.	3.7	122
33	Different Interaction Mechanisms of Eu(III) and ²⁴³ Am(III) with Carbon Nanotubes Studied by Batch, Spectroscopy Technique and Theoretical Calculation. Environmental Science & Technology, 2015, 49, 11721-11728.	4.6	113
34	One-pot synthesis of graphene oxide and Ni-Al layered double hydroxides nanocomposites for the efficient removal of U(VI) from wastewater. Science China Chemistry, 2017, 60, 415-422.	4.2	105
35	Synergistic coagulation of GO and secondary adsorption of heavy metal ions on Ca/Al layered double hydroxides. Environmental Pollution, 2017, 229, 827-836.	3.7	103
36	Preparation of core-shell structure Fe3O4@C@MnO2 nanoparticles for efficient elimination of U(VI) and Eu(III) ions. Science of the Total Environment, 2019, 685, 986-996.	3.9	101

XIANGXUE WANG

#	Article	IF	CITATIONS
37	Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix. Environmental Pollution, 2018, 243, 218-227.	3.7	94
38	Construction of Layered Double Hydroxides/Hollow Carbon Microsphere Composites and Its Applications for Mutual Removal of Pb(II) and Humic Acid from Aqueous Solutions. ACS Sustainable Chemistry and Engineering, 2017, 5, 11268-11279.	3.2	92
39	Amidoxime functionalization of mesoporous silica and its high removal of U(<scp>vi</scp>). Polymer Chemistry, 2015, 6, 5376-5384.	1.9	89
40	Performances and mechanisms of Mg/Al and Ca/Al layered double hydroxides for graphene oxide removal from aqueous solution. Chemical Engineering Journal, 2016, 297, 106-115.	6.6	85
41	In-situ reduction synthesis of manganese dioxide@polypyrrole core/shell nanomaterial for highly efficient enrichment of U(VI) and Eu(III). Science China Chemistry, 2018, 61, 812-823.	4.2	84
42	Three-dimensional graphene/titanium dioxide composite for enhanced U(VI) capture: Insights from batch experiments, XPS spectroscopy and DFT calculation. Environmental Pollution, 2019, 251, 975-983.	3.7	82
43	Spectroscopic and theoretical studies on the counterion effect of Cu(<scp>ii</scp>) ion and graphene oxide interaction with titanium dioxide. Environmental Science: Nano, 2016, 3, 1361-1368.	2.2	77
44	Adsorption, Aggregation, and Deposition Behaviors of Carbon Dots on Minerals. Environmental Science & Technology, 2017, 51, 6156-6164.	4.6	77
45	Efficient elimination of U(<scp>vi</scp>) by polyethyleneimine-decorated fly ash. Inorganic Chemistry Frontiers, 2018, 5, 2399-2407.	3.0	72
46	Rationally designed core-shell and yolk-shell magnetic titanate nanosheets for efficient U(VI) adsorption performance. Environmental Pollution, 2018, 238, 725-738.	3.7	71
47	Macroscopic and microscopic investigation of uranium elimination by Ca–Mg–Al-layered double hydroxide supported nanoscale zero valent iron. Inorganic Chemistry Frontiers, 2018, 5, 2657-2665.	3.0	66
48	A strategically designed porous magnetic N-doped Fe/Fe ₃ C@C matrix and its highly efficient uranium(<scp>vi</scp>) remediation. Inorganic Chemistry Frontiers, 2016, 3, 1227-1235.	3.0	63
49	Systematic studies on the binding of metal ions in aggregates of humic acid: Aggregation kinetics, spectroscopic analyses and MD simulations. Environmental Pollution, 2019, 246, 999-1007.	3.7	62
50	Highly efficient Pb(<scp>ii</scp>) and Cu(<scp>ii</scp>) removal using hollow Fe ₃ O ₄ @PDA nanoparticles with excellent application capability and reusability. Inorganic Chemistry Frontiers, 2018, 5, 2174-2182.	3.0	61
51	Functionalization of biomass carbonaceous aerogels and their application as electrode materials for electro-enhanced recovery of metal ions. Environmental Science: Nano, 2017, 4, 1114-1123.	2.2	60
52	Interaction of radionuclides with natural and manmade materials using XAFS technique. Science China Chemistry, 2017, 60, 170-187.	4.2	56
53	Heteroaggregation behavior of graphene oxide on Zr-based metal–organic frameworks in aqueous solutions: a combined experimental and theoretical study. Journal of Materials Chemistry A, 2017, 5, 20398-20406.	5.2	53
54	Efficient elimination of Cr(VI) from aqueous solutions using sodium dodecyl sulfate intercalated molybdenum disulfide. Ecotoxicology and Environmental Safety, 2019, 175, 251-262.	2.9	52

XIANGXUE WANG

#	Article	IF	CITATIONS
55	Effect of Shewanella oneidensis MR-1 on U(VI) sequestration by montmorillonite. Journal of Environmental Radioactivity, 2022, 242, 106798.	0.9	44
56	Surface Modification of Graphene Oxides by Plasma Techniques and Their Application for Environmental Pollution Cleanup. Chemical Record, 2016, 16, 295-318.	2.9	40
57	l-cysteine intercalated layered double hydroxide for highly efficient capture of U(VI) from aqueous solutions. Journal of Environmental Management, 2018, 217, 468-477.	3.8	40
58	Multi-heteroatom doped graphene-like carbon nanospheres with 3D inverse opal structure: a promising bisphenol-A remediation material. Environmental Science: Nano, 2019, 6, 809-819.	2.2	36
59	Enhanced Photocatalytic Simultaneous Removals of Cr(VI) and Bisphenol A over Co(II)-Modified TiO ₂ . Langmuir, 2019, 35, 276-283.	1.6	36
60	Enhanced immobilization of U(VI) on Mucor circinelloides in presence of As(V): Batch and XAFS investigation. Environmental Pollution, 2018, 237, 228-236.	3.7	30
61	Fabrication of Magnetic Fe/Zn Layered Double Oxide@Carbon Nanotube Composites and Their Application for U(VI) and ²⁴¹ Am(III) Removal. ACS Applied Nano Materials, 2018, 1, 2386-2396.	2.4	30
62	Complex Roles of Solution Chemistry on Graphene Oxide Coagulation onto Titanium Dioxide: Batch Experiments, Spectroscopy Analysis and Theoretical Calculation. Scientific Reports, 2017, 7, 39625.	1.6	27
63	Efficient removal of Eu(III) from aqueous solutions using super-adsorbent of bentonite–polyacrylamide composites. Journal of Radioanalytical and Nuclear Chemistry, 2015, 306, 497-505.	0.7	24
64	Complexation of radionuclide 152+154Eu(III) with alumina-bound fulvic acid studied by batch and time-resolved laser fluorescence spectroscopy. Science China Chemistry, 2017, 60, 107-114.	4.2	22
65	Microstructures and speciation of radionuclides in natural environment studied by advanced spectroscopy and theoretical calculation. Science China Chemistry, 2017, 60, 1149-1152.	4.2	18
66	Comparative Investigation of Fe ₂ O ₃ and Fe _{1–<i>x</i>} S Nanostructures for Uranium Decontamination. ACS Applied Nano Materials, 2018, 1, 5543-5552.	2.4	15
67	Designed Core–Shell Fe3O4@Polydopamine for Effectively Removing Uranium(VI) from Aqueous Solution. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 165-174.	1.3	13
68	Enhanced accumulation of U(VI) by Aspergillus oryzae mutant generated by dielectric barrier discharge air plasma. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310, 1353-1360.	0.7	12
69	Efficient coagulation of graphene oxide on chitosan–metal oxide composites from aqueous solutions. Cellulose, 2017, 24, 851-861.	2.4	12
70	Immobilization of As(V) in <i>Rhizopus oryzae</i> Investigated by Batch and XAFS Techniques. ACS Omega, 2016, 1, 899-906.	1.6	10
71	Investigation of 90Sr(II) sorption onto graphene oxides studied by macroscopic experiments and theoretical calculations. Journal of Radioanalytical and Nuclear Chemistry, 2016, 308, 721-732.	0.7	8
72	Electrocatalysts: Ternary NiCo ₂ P <i>_x</i> Nanowires as pHâ€Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction (Adv. Mater. 9/2017). Advanced Materials, 2017, 29, .	11.1	8

#	Article	IF	CITATIONS
73	Synthesis of β-cyclodextrin grafted attapulgite/iron oxides and their application for efficient removal of 152+154Eu(III). Journal of Radioanalytical and Nuclear Chemistry, 2016, 309, 1241-1250.	0.7	6
74	Highly efficient carbonaceous nanofiber/layered double hydroxide nanocomposites for removal of U(VI) from aqueous solutions. Radiochimica Acta, 2019, 107, 299-309.	0.5	4
75	Photocatalytic Elimination of Cr(VI) in Aqueous Solution by Using ZSM-5 Zeolite as Catalyst and Urea as Coexisting Organic Contaminants. Nano LIFE, 2015, 05, 1542001.	0.6	2