Alexandre F T Yokochi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7629372/publications.pdf

Version: 2024-02-01

53 papers

1,841 citations

³⁹⁴⁴²¹ 19 h-index 34 g-index

55 all docs 55 docs citations

55 times ranked 2275 citing authors

#	Article	IF	CITATIONS
1	Current Li-lon Battery Technologies in Electric Vehicles and Opportunities for Advancements. Energies, 2019, 12, 1074.	3.1	444
2	Optimal Energy Storage Sizing and Control for Wind Power Applications. IEEE Transactions on Sustainable Energy, 2010, , .	8.8	220
3	Structure and Absolute Stereochemistry of Hectochlorin, a Potent Stimulator of Actin Assembly. Journal of Natural Products, 2002, 65, 866-871.	3.0	159
4	Advanced Electric Vehicle Fast-Charging Technologies. Energies, 2019, 12, 1839.	3.1	115
5	An Overview of Electric Machine Trends in Modern Electric Vehicles. Machines, 2020, 8, 20.	2.2	85
6	Tandem Ring-Closing Metathesis Transannular Cyclization as a Route to Hydroxylated Pyrrolizidines. Asymmetric Synthesis of (+)-Australine. Journal of the American Chemical Society, 1998, 120, 7359-7360.	13.7	80
7	Current Technologies in Depolymerization Process and the Road Ahead. Polymers, 2021, 13, 449.	4.5	70
8	Neurotoxic Meroditerpenoids from the Tropical Marine Brown AlgaStypopodium flabelliforme. Journal of Natural Products, 2005, 68, 1022-1030.	3.0	67
9	Structural and Synthetic Investigations of Tanikolide Dimer, a SIRT2 Selective Inhibitor, and Tanikolide <i>seco</i> -Acid from the Madagascar Marine Cyanobacterium <i>Lyngbya majuscula</i> . Journal of Organic Chemistry, 2009, 74, 5267-5275.	3.2	56
10	Comparison of Direct-Drive Power Takeoff Systems for Ocean Wave Energy Applications. IEEE Journal of Oceanic Engineering, 2012, 37, 35-44.	3.8	53
11	Transannular Nitrone Cycloaddition. A Stereocontrolled Entry to the Spirocyclic Core of Pinnaic Acid. Organic Letters, 2001, 3, 413-415.	4.6	48
12	Unified Synthesis of C19â^'C26 Subunits of Amphidinolides B1, B2, and B3 by Exploiting Unexpected Stereochemical Differences in Crimmins' and Evans' Aldol Reactions. Journal of Organic Chemistry, 2004, 69, 2569-2572.	3.2	47
13	Degradation of diuron via an electrochemical advanced oxidation process in a microscale-based reactor. Chemical Engineering Journal, 2016, 292, 298-307.	12.7	46
14	Asymmetric synthesis of $(+)$ -loline, a pyrrolizidine alkaloid from rye grass and tall fescue. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1831-1847.	1.3	44
15	Integration of thermoelectrics and photovoltaics as auxiliary power sources in mobile computing applications. Journal of Power Sources, 2008, 177, 239-246.	7.8	37
16	Structure and physical properties of BaCuTeF. Journal of Solid State Chemistry, 2007, 180, 1672-1677.	2.9	30
17	High Performance Electric Vehicle Powertrain Modeling, Simulation and Validation. Energies, 2021, 14, 1493.	3.1	26
18	X-ray diffractometric study of microcrystallite size of naturally colored cottons. Journal of Applied Polymer Science, 2000, 76, 1466-1471.	2.6	25

#	Article	IF	CITATIONS
19	Vanadium-catalyzed selenide oxidation with in situ [2,3] sigmatropic rearrangement (SOS reaction): scope and asymmetric applications. Organic and Biomolecular Chemistry, 2004, 2, 1315-1329.	2.8	22
20	Selectivity in alkynylation: the reaction between Ru2(LL)4Cl and Me3SnCi~†CR (LL=2-anilinopyridine,) Tj ETQq0 C	0 0 fgBT /C	verlock 10 Tf
21	Catalytic deoxygenation of epoxides with (Cp*ReO)2(\hat{l} /4-O)2 and catalyst deactivation. Chemical Communications, 1998, , 799-800.	4.1	17
22	Supercapacitor energy storage systems for voltage and power flow stabilization., 2013,,.		15
23	Structural Characterization of Dirhenium(II) Complexes of the Type Re2Cl4(μ-PP)(PR3)2, Where PP Represents a Bridging Phosphine of the Type R2PCH2PR2 or R2PNHPR2. Inorganic Chemistry, 1998, 37, 372-375.	4.0	12
24	Supercapacitor energy storage for wind energy integration., 2011,,.		11
25	Diffusion of dissolved ions from wet silica sol–gel monoliths: Implications for biological encapsulation. Colloids and Surfaces B: Biointerfaces, 2013, 102, 611-619.	5.0	11
26	A sustainable power architecture for mobile computing systems. Journal of Power Sources, 2008, 178, 467-475.	7.8	9
27	Stereochemistry of contiguous cyclopropane formation from cascade cyclization of a skipped dienyl homoallyl triflate. Chemical Communications, 2004, , 2846.	4.1	8
28	Non-catalytic ethane cracking using concentrated solar energy. Chemical Engineering Journal, 2019, 355, 58-64.	12.7	7
29	Effect of packing fraction on ferromagnetic resonance in NiFe2O4 nanocomposites. Journal of Applied Physics, 2012, 111, 07E348.	2.5	6
30	Experimental modeling of hydrogen producing steps in a novel sulfur–sulfur thermochemical water splitting cycle. International Journal of Hydrogen Energy, 2015, 40, 2484-2492.	7.1	6
31	A rapid PMU-based load composition and PMU estimation method. Electric Power Systems Research, 2017, 143, 44-52.	3.6	6
32	Methane Coupling to Ethylene and Longer-Chain Hydrocarbons by Low-Energy Electrical Discharge in Microstructured Reactors. Industrial & Engineering Chemistry Research, 2021, 60, 6950-6958.	3.7	6
33	Thermal Stability of Tris(3,5-dimethylpyrazolyl)hydridoboratorhenium(V)(oxo)- (1,2-dithiolate) and -(1,2-monothiodiolate) Complexes and DFT Studies of Câ°'S Bond Cleavage. Organometallics, 2002, 21, 929-933.	2.3	5
34	Electric Vehicle (EV) Chassis Dynamometer Testing. , 2020, , .		4
35	Novel Characterization of Si- and SiC-Based PWM Inverter Bearing Currents Using Probability Density Functions. Energies, 2022, 15, 3043.	3.1	4
36	CO ₂ Reduction by Multiple Low-Energy Electric Discharges in a Microstructured Reactor: Experiments and Modeling. Industrial & Experiments and Modeling. Industrial & Experiments and Modeling. Industrial & Experiments	3.7	4

#	Article	lF	CITATIONS
37	Asymmetric synthesis of dimethyl swazinecate and structural confirmation of its parent alkaloid (\hat{a} °)-swazine. Chemical Communications, 1998, , 603-604.	4.1	3
38	Supercapacitor performance characterization for renewables applications. , 2014, , .		3
39	Rapid bidirectional power flow of supercapacitor energy storage systems through grid-tied inverters for improved renewables integration. , $2013, \ldots$		2
40	Dry Reforming in a Milli-Scale Reactor Driven by Simulated Sunlight. ChemEngineering, 2018, 2, 50.	2.4	2
41	Numerical and Experimental Modeling of Direct-Drive Wave Energy Extraction Devices. , 2007, , .		2
42	Parametric Study of Hydrocarbon Chain Growth from Methane via a Nonthermal Plasma Discharge Microreactor. Industrial & Engineering Chemistry Research, 0, , .	3.7	2
43	Research and ocean testing solutions to advance the wave energy industry. , 2014, , .		1
44	Vanadium-Catalyzed Selenide Oxidation with in situ [2,3] Sigmatropic Rearrangement (SOS Reaction): Scope and Asymmetric Applications ChemInform, 2004, 35, no.	0.0	0
45	Stereochemistry of Contiguous Cyclopropane Formation from Cascade Cyclization of a Skipped Dienyl Homoallyl Triflate ChemInform, 2005, 36, no.	0.0	0
46	Ferromagnetic resonance study on NiFe <inf>2</inf> O <inf>4</inf> nanocomposites. , 2011, , .		0
47	Development of an option in Nanotechnology: Elements of Student learning. , 2011, , .		O
48	Accelerated aging methods for evaluating carbon electrode materials. , 2014, , .		0
49	Electrochemical antifouling technology for replacement of heavy metal and organic biocides in marine hydrokinetic energy generation. , 2014 , , .		O
50	Wave energy power transmission lines: Electric and magnetic field propagation. , 2014, , .		0
51	Rapid grid state estimation using Singular Value Decomposition similarity matching. , 2015, , .		0
52	Advancing wave energy converter array-to-grid transmission systems. , 2015, , .		0
53	Power Electronics Testbed for Converting Methane to Liquid Fuels via Electrical Corona. , 2018, , .		0