Xiaopeng Ning

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7629248/publications.pdf

Version: 2024-02-01

430754 501076 48 861 18 28 citations g-index h-index papers 49 49 49 696 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Biomechanical assessment while using production tables on mast climbing work platforms. Applied Ergonomics, 2021, 90, 103276.	1.7	2
2	Assessing work-related risk factors for musculoskeletal knee disorders in construction roofing tasks. Applied Ergonomics, 2019, 81, 102901.	1.7	22
3	Lowering minimum eye height to increase peak knee and hip flexion during landing. Research in Sports Medicine, 2018, 26, 251-261.	0.7	4
4	Effects of the weight configuration of hand load on trunk musculature during static weight holding. Ergonomics, 2018, 61, 831-838.	1.1	9
5	Changes of lumbar posture and tissue loading during static trunk bending. Human Movement Science, 2018, 57, 59-68.	0.6	21
6	Lumbar Range of Motion and Flexion Relaxation Phenomenon Onset During Static Trunk Bending Postures. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 915-919.	0.2	2
7	The Influence of Load Handling Height on Shoulder Biomechanics during Sudden Loading. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 828-832.	0.2	O
8	Using a deep learning network to recognise low back pain in static standing. Ergonomics, 2018, 61, 1374-1381.	1.1	36
9	The influence of external load configuration on trunk biomechanics and spinal loading during sudden loading. Ergonomics, 2018, 61, 1364-1373.	1.1	5
10	Assessing Work-Related Risk Factors on Low Back Disorders among Roofing Workers. Journal of Construction Engineering and Management - ASCE, 2017, 143, .	2.0	25
11	Evaluation of postural sway and impact forces during ingress and egress of scissor lifts at elevations. Applied Ergonomics, 2017, 65, 152-162.	1.7	7
12	An EMG-assisted modeling approach to assess passive lumbar tissue loading in vivo during trunk bending. Journal of Electromyography and Kinesiology, 2017, 36, 1-7.	0.7	3
13	Investigating the effects of movement speed on the lumbopelvic coordination during trunk flexion. Human Movement Science, 2016, 48, 153-160.	0.6	5
14	The influences of foot placement on lumbopelvic rhythm during trunk flexion motion. Journal of Biomechanics, 2016, 49, 1692-1697.	0.9	10
15	Comparison of Lumbopelvic Coordination between Trunk Flexion and Extension. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 937-941.	0.2	О
16	Lumbar Posture and Tissue Loading During Short-Term Static Posture Holding. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 948-952.	0.2	0
17	Cervical spine biomechanics and task performance during touchscreen computer operations. International Journal of Industrial Ergonomics, 2016, 56, 41-50.	1.5	8
18	Effects of Touch Screen Interface Parameters on User Task Performance. Proceedings of the Human Factors and Ergonomics Society, 2016, 60, 820-824.	0.2	1

#	Article	IF	CITATIONS
19	Concurrent Tactile Feedback Provided by a Simple Device Increased Knee Flexion and Decreased Impact Ground Reaction Forces During Landing. Journal of Applied Biomechanics, 2016, 32, 248-253.	0.3	6
20	Differences in lumbopelvic rhythm between trunk flexion and extension. Clinical Biomechanics, 2016, 32, 274-279.	0.5	26
21	The changes of lumbar muscle flexion-relaxation phenomenon due to antero-posteriorly slanted ground surfaces. Ergonomics, 2016, 59, 1251-1258.	1.1	6
22	Effects of Uneven Ground Surface on Human Balance. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 1243-1247.	0.2	1
23	The Effects of Uneven Ground Surface on Trunk Biomechanical Responses during Sudden Loading. Proceedings of the Human Factors and Ergonomics Society, 2015, 59, 1248-1251.	0.2	0
24	Passive lumbar tissue loading during trunk bending at three speeds: An in vivo study. Clinical Biomechanics, 2015, 30, 726-731.	0.5	6
25	The Changes of Trunk Motion Rhythm and Spinal Loading During Trunk Flexion and Extension Motions Caused by Lumbar Muscle Fatigue. Annals of Biomedical Engineering, 2015, 43, 2112-2119.	1.3	15
26	Risk Assessment of Work-Related Musculoskeletal Disorders in Construction: State-of-the-Art Review. Journal of Construction Engineering and Management - ASCE, 2015, 141, .	2.0	155
27	The influence of lumbar extensor muscle fatigue on lumbar–pelvic coordination during weightlifting. Ergonomics, 2015, 58, 1424-1432.	1.1	30
28	Neck kinematics and muscle activity during mobile device operations. International Journal of Industrial Ergonomics, 2015, 48, 10-15.	1.5	70
29	The assessment of material-handling strategies in dealing with sudden loading: the effect of uneven ground surface on trunk biomechanical responses. Ergonomics, 2015, 58, 259-267.	1.1	13
30	The effects of stance width and foot posture on lumbar muscle flexion-relaxation phenomenon. Clinical Biomechanics, 2014, 29, 311-316.	0.5	23
31	A resistance band increased internal hip abduction moments and gluteus medius activation during pre-landing and early-landing. Journal of Biomechanics, 2014, 47, 3674-3680.	0.9	21
32	Impact of shoulder position and fatigue on the flexion–relaxation response in cervical spine. Clinical Biomechanics, 2014, 29, 277-282.	0.5	17
33	The assessment of material handling strategies in dealing with sudden loading: The effects of load handling position on trunk biomechanics. Applied Ergonomics, 2014, 45, 1399-1405.	1.7	43
34	Effect of seat orientation on ingress/egress joint kinematics and reach envelope. Occupational Ergonomics, 2014, 11, 137-151.	0.3	1
35	The influence of hand load on lumbar-pelvic coordination during lifting task. Proceedings of the Human Factors and Ergonomics Society, 2014, 58, 1617-1621.	0.2	8
36	The Effect of Load Holding Height on Trunk Biomechanics during Sudden Loading. Proceedings of the Human Factors and Ergonomics Society, 2014, 58, 1622-1626.	0.2	3

3

#	Article	IF	CITATIONS
37	Low back pain development response to sustained trunk axial twisting. European Spine Journal, 2013, 22, 1972-1978.	1.0	17
38	The assessment of material handling strategies in dealing with sudden loading: influences of foot placement on trunk biomechanics. Ergonomics, 2013, 56, 1569-1576.	1.1	33
39	Changes of Lumbar Muscle Flexion Relaxation Phenomenon When Standing on Unilaterally Elevated Ground. Proceedings of the Human Factors and Ergonomics Society, 2013, 57, 925-928.	0.2	3
40	Trunk Kinematics under Sudden Loading Impact when Adopting Different Foot Postures. Proceedings of the Human Factors and Ergonomics Society, 2013, 57, 929-933.	0.2	5
41	Assessing Spinal Loading Using the Kinect Depth Sensor: A Feasibility Study. IEEE Sensors Journal, 2013, 13, 1139-1140.	2.4	23
42	The changes of lumbar muscle flexion–relaxation response due to laterally slanted ground surfaces. Ergonomics, 2013, 56, 1295-1303.	1.1	26
43	An algorithm for defining the onset and cessation of the flexion-relaxation phenomenon in the low back musculature. Journal of Electromyography and Kinesiology, 2012, 22, 376-382.	0.7	36
44	Describing the active region boundary of EMG-assisted biomechanical models of the low back. Clinical Biomechanics, 2012, 27, 422-427.	0.5	29
45	Influence of asymmetry on the flexion relaxation response of the low back musculature. Clinical Biomechanics, 2011, 26, 35-39.	0.5	41
46	Ergonomic interventions for commercial crab fishermen. International Journal of Industrial Ergonomics, 2011, 41, 481-487.	1.5	16
47	The effect of sinusoidal rolling ground motion on lifting biomechanics. Applied Ergonomics, 2010, 42, 131-137.	1.7	19
48	The effects of horizontal load speed and lifting frequency on lifting technique and biomechanics. Ergonomics, 2010, 53, 1024-1032.	1.1	8