Andras Szarka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/762914/publications.pdf

Version: 2024-02-01

46 papers 1,855 citations

304743

22

h-index

42 g-index

51 all docs

51 docs citations

51 times ranked

2680 citing authors

#	Article	IF	CITATIONS
1	Friend or Foe: The Relativity of (Anti)oxidative Agents and Pathways. International Journal of Molecular Sciences, 2022, 23, 5188.	4.1	11
2	Vitamin C and Cell Death. Antioxidants and Redox Signaling, 2021, 34, 831-844.	5.4	29
3	Therapeutic Approach of KRAS Mutant Tumours by the Combination of Pharmacologic Ascorbate and Chloroquine. Biomolecules, 2021, 11, 652.	4.0	7
4	The Performance of HepG2 and HepaRG Systems through the Glass of Acetaminophen-Induced Toxicity. Life, 2021, 11, 856.	2.4	8
5	Drug induced cytotoxicity in various in vitro models. Free Radical Biology and Medicine, 2021, 177, S131.	2.9	O
6	BGP-15 Protects Mitochondria in Acute, Acetaminophen Overdose Induced Liver Injury. Pathology and Oncology Research, 2020, 26, 1797-1803.	1.9	6
7	Fine-tuning of AMPK–ULK1–mTORC1 regulatory triangle is crucial for autophagy oscillation. Scientific Reports, 2020, 10, 17803.	3.3	29
8	Genetic Polymorphism of GSTP-1 Affects Cyclophosphamide Treatment of Autoimmune Diseases. Molecules, 2020, 25, 1542.	3.8	10
9	A Double Negative Feedback Loop between mTORC1 and AMPK Kinases Guarantees Precise Autophagy Induction upon Cellular Stress. International Journal of Molecular Sciences, 2019, 20, 5543.	4.1	57
10	Glucose Transport and Transporters in the Endomembranes. International Journal of Molecular Sciences, 2019, 20, 5898.	4.1	46
11	The potential role of acrolein in plant ferroptosis-like cell death. PLoS ONE, 2019, 14, e0227278.	2.5	21
12	The Interrelationship of Pharmacologic Ascorbate Induced Cell Death and Ferroptosis. Pathology and Oncology Research, 2019, 25, 669-679.	1.9	21
13	Comparison of the response of alternative oxidase and uncoupling proteins to bacterial elicitor induced oxidative burst. PLoS ONE, 2019, 14, e0210592.	2.5	9
14	Suppression of <i>AMPK/aakâ€2</i> by NRF2/SKNâ€1 downâ€regulates autophagy during prolonged oxidative stress. FASEB Journal, 2019, 33, 2372-2387.	0.5	37
15	Concentration Does Matter: The Beneficial and Potentially Harmful Effects of Ascorbate in Humans and Plants. Antioxidants and Redox Signaling, 2018, 29, 1516-1533.	5.4	30
16	The Problem of Glutathione Determination: a Comparative Study on the Measurement of Glutathione from Plant Cells. Periodica Polytechnica: Chemical Engineering, 2018, 63, 1-10.	1.1	16
17	In silico Analysis on the Possible Role of Mitochondria in Ferroptosis. Periodica Polytechnica: Chemical Engineering, 2018, 62, .	1.1	O
18	The determination of hepatic glutathione at tissue and subcellular level. Journal of Pharmacological and Toxicological Methods, 2017, 88, 32-39.	0.7	22

#	Article	IF	Citations
19	Rapid ascorbate response to bacterial elicitor treatment in Arabidopsis thaliana cells. Acta Physiologiae Plantarum, 2017, 39, 1.	2.1	4
20	Rapid ascorbate response to bacterial elicitor treatment in Arabidopsis thaliana cells. Free Radical Biology and Medicine, 2017, 108, S22.	2.9	0
21	GLUT10—Lacking in Arterial Tortuosity Syndrome—Is Localized to the Endoplasmic Reticulum of Human Fibroblasts. International Journal of Molecular Sciences, 2017, 18, 1820.	4.1	15
22	The Level of ALR is Regulated by the Quantity of Mitochondrial DNA. Pathology and Oncology Research, 2016, 22, 431-437.	1.9	3
23	Ferroptosis is Involved in Acetaminophen Induced Cell Death. Pathology and Oncology Research, 2015, 21, 1115-1121.	1.9	146
24	In silico aided thoughts on mitochondrial vitamin C transport. Journal of Theoretical Biology, 2015, 365, 181-189.	1.7	12
25	Determination of sorbitol in the presence of high amount of mannitol from biological samples. Periodica Polytechnica: Chemical Engineering, 2014, 58, 1.	1.1	3
26	The role of ascorbate in protein folding. Protoplasma, 2014, 251, 489-497.	2.1	33
27	Subcellular compartmentation of ascorbate and its variation in disease states. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 1909-1916.	4.1	58
28	Quantitative data on the contribution of GSH and Complex II dependent ascorbate recycling in plant mitochondria. Acta Physiologiae Plantarum, 2013, 35, 3245-3250.	2.1	8
29	The Inter-Relationship of Ascorbate Transport, Metabolism and Mitochondrial, Plastidic Respiration. Antioxidants and Redox Signaling, 2013, 19, 1036-1044.	5.4	43
30	Crosstalk and Barriers Between the Electron Carriers of the Endoplasmic Reticulum. Antioxidants and Redox Signaling, 2012, 16, 772-780.	5.4	21
31	The Ascorbate-glutathione-î±-tocopherol Triad in Abiotic Stress Response. International Journal of Molecular Sciences, 2012, 13, 4458-4483.	4.1	202
32	Enhanced activity of galactono-1,4-lactone dehydrogenase and ascorbate–glutathione cycle in mitochondria from complex III deficient Arabidopsis. Plant Physiology and Biochemistry, 2011, 49, 809-815.	5.8	29
33	Oxidative folding: recent developments. Biomolecular Concepts, 2011, 2, 379-390.	2.2	3
34	BGP-15 inhibits caspase-independent programmed cell death in acetaminophen-induced liver injury. Toxicology and Applied Pharmacology, 2010, 243, 96-103.	2.8	61
35	Vitamin C: update on physiology and pharmacology. British Journal of Pharmacology, 2009, 157, 1097-1110.	5.4	356
36	Demonstration of an intramitochondrial invertase activity and the corresponding sugar transporters of the inner mitochondrial membrane in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Planta, 2008, 228, 765-775.	3.2	21

#	Article	IF	CITATION
37	Dehydroascorbate and glucose are taken up into <i>Arabidopsis thaliana</i> cell cultures by two distinct mechanisms. FEBS Letters, 2008, 582, 2714-2718.	2.8	17
38	Intraluminal hydrogen peroxide induces a permeability change of the endoplasmic reticulum membrane. FEBS Letters, 2008, 582, 4131-4136.	2.8	14
39	Arabidopsis PPR40 Connects Abiotic Stress Responses to Mitochondrial Electron Transport Â. Plant Physiology, 2008, 146, 1721-1737.	4.8	137
40	Acetaminophen induces ER dependent signaling in mouse liver. Archives of Biochemistry and Biophysics, 2007, 459, 273-279.	3.0	93
41	Dehydroascorbate reduction in plant mitochondria is coupled to the respiratory electron transfer chain. Physiologia Plantarum, 2007, 129, 225-232.	5.2	37
42	FAD Transport and FAD-dependent Protein Thiol Oxidation in Rat Liver Microsomes. Journal of Biological Chemistry, 2004, 279, 3370-3374.	3.4	23
43	Facilitated glucose and dehydroascorbate transport in plant mitochondria. Archives of Biochemistry and Biophysics, 2004, 428, 73-80.	3.0	48
44	Ascorbyl free radical and dehydroascorbate formation in rat liver endoplasmic reticulum. Journal of Bioenergetics and Biomembranes, 2002, 34, 317-323.	2.3	32
45	Role of Vitamin E in Ascorbate-Dependent Protein Thiol Oxidation in Rat Liver Endoplasmic Reticulum. Archives of Biochemistry and Biophysics, 2001, 388, 55-59.	3.0	27
46	Ascorbate-mediated electron transfer in protein thiol oxidation in the endoplasmic reticulum. FEBS Letters, 1999, 460, 539-543.	2.8	33