
Ana B GarcÃ-a

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7629135/publications.pdf Version: 2024-02-01

ΔΝΑ Β ΟΛΡΟΑ

#	Article	IF	CITATIONS
1	A promising silicon/carbon xerogel composite for high-rate and high-capacity lithium-ion batteries. Electrochimica Acta, 2022, 426, 140790.	2.6	5
2	Graphitic biogas-derived nanofibers as cathodes for sodium dual-ion batteries: Intercalation of PF6â´' anions. Electrochemistry Communications, 2021, 128, 107075.	2.3	3
3	Silicon/Biogas-Derived Carbon Nanofibers Composites for Anodes of Lithium-Ion Batteries. Journal of Carbon Research, 2020, 6, 25.	1.4	1
4	Sustainable Graphitic Carbon Materials from Biogas as Anodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A403-A409.	1.3	6
5	Graphitic carbon foams as anodes for sodium-ion batteries in glyme-based electrolytes. Electrochimica Acta, 2018, 270, 236-244.	2.6	27
6	Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries. Electrochimica Acta, 2016, 222, 264-270.	2.6	22
7	Expanded graphitic materials prepared from micro- and nanometric precursors as anodes for sodium-ion batteries. Electrochimica Acta, 2016, 187, 496-507.	2.6	33
8	Hydrocolloids as binders for graphite anodes of lithium-ion batteries. Electrochimica Acta, 2015, 155, 140-147.	2.6	57
9	Few layer graphene synthesis on transition metal ferrite catalysts. Carbon, 2015, 89, 350-360.	5.4	32
10	Is single layer graphene a promising anode for sodium-ion batteries?. Electrochimica Acta, 2015, 178, 392-397.	2.6	35
11	Carbon-supported iron–ionic liquid: an efficient and recyclable catalyst for benzylation of 1,3-dicarbonyl compounds with alcohols. Green Chemistry, 2014, 16, 4306-4311.	4.6	10
12	Anodic Rate Performance in Lithium-Ion Batteries of Graphite Materials Based on Carbonaceous Wastes. Journal of the Electrochemical Society, 2014, 161, A2026-A2030.	1.3	3
13	Graphitized stacked-cup carbon nanofibers as anode materials for lithium-ion batteries. Electrochimica Acta, 2014, 146, 769-775.	2.6	15
14	Efficient and recyclable carbon-supported Pd nanocatalysts for the Suzuki–Miyaura reaction in aqueous-based media: Microwave vs conventional heating. Applied Catalysis A: General, 2013, 468, 59-67.	2.2	29
15	Graphitization thermal treatment of carbon nanofibers. Carbon, 2013, 59, 2-32.	5.4	96
16	Carbon-supported Palladium and Ruthenium Nanoparticles: Application as Catalysts in Alcohol Oxidation, Cross-coupling and Hydrogenation Reactions. Recent Patents on Nanotechnology, 2013, 7, 247-264.	0.7	14
17	Influence of the inherent metal species on the graphitization of methane-based carbon nanofibers. Carbon, 2012, 50, 5387-5394.	5.4	19
18	Versatile dual hydrogenation–oxidation nanocatalysts for the aqueous transformation of biomass-derived platform molecules. Green Chemistry, 2012, 14, 1434.	4.6	47

ANA B GARCÃA

#	Article	IF	CITATIONS
19	Efficient microwave-assisted production of furfural from C5 sugars in aqueous media catalysed by Br¶nsted acidic ionic liquids. Catalysis Science and Technology, 2012, 2, 1828.	2.1	87
20	Graphitized carbon nanofibers for use as anodes in lithium-ion batteries: Importance of textural and structural properties. Journal of Power Sources, 2012, 198, 303-307.	4.0	25
21	Carbon-supported Ru and Pd nanoparticles: Efficient and recyclable catalysts for the aerobic oxidation of benzyl alcohol in water. Microporous and Mesoporous Materials, 2012, 153, 155-162.	2.2	47
22	Chemical stability of choline-based ionic liquids supported on carbon materials. Journal of Molecular Liquids, 2012, 169, 37-42.	2.3	12
23	Development of graphite-like particles from the high temperature treatment of carbonized anthracites. International Journal of Coal Geology, 2011, 85, 219-226.	1.9	57
24	Graphitized boron-doped carbon foams: Performance as anodes in lithium-ion batteries. Electrochimica Acta, 2011, 56, 5090-5094.	2.6	62
25	Carbons supported bio-ionic liquids: Stability and catalytic activity. Microporous and Mesoporous Materials, 2011, 144, 205-208.	2.2	8
26	Graphite materials prepared by HTT of unburned carbon from coal combustion fly ashes: Performance as anodes in lithium-ion batteries. Journal of Power Sources, 2011, 196, 4816-4820.	4.0	66
27	The graphitization of carbon nanofibers produced by catalytic decomposition of methane: Synergetic effect of the inherent Ni and Si. Fuel, 2010, 89, 2160-2162.	3.4	22
28	High-Resolution Transmission Electron Microscopy Studies of Graphite Materials Prepared by High-Temperature Treatment of Unburned Carbon Concentrates from Combustion Fly Ashes. Energy & Fuels, 2009, 23, 942-950.	2.5	23
29	Structural Study of Graphite Materials Prepared by HTT of Unburned Carbon Concentrates from Coal Combustion Fly Ashes. Energy & Fuels, 2008, 22, 1239-1243.	2.5	32
30	Optical Parameters as a Tool To Study the Microstructural Evolution of Carbonized Anthracites during High-Temperature Treatment. Energy & Fuels, 2007, 21, 2935-2941.	2.5	57
31	Temperature-programmed oxidation studies of carbon materials prepared from anthracites by high temperature treatment. Materials Chemistry and Physics, 2007, 101, 137-141.	2.0	23
32	Stereocomplementary synthesis of a natural product-derived compound collection on a solid phase. Chemical Communications, 2006, , 3868-3870.	2.2	44
33	A study of the evolution of the physicochemical and structural characteristics of olive and sunflower oils after heating at frying temperatures. Food Chemistry, 2006, 98, 214-219.	4.2	45
34	On the utilization of waste vegetable oils (WVO) as agglomerants to recover coal from coal fines cleaning wastes (CFCW). Fuel, 2006, 85, 607-614.	3.4	49
35	Evaluation of mercury associations in two coals of different rank using physical separation procedures. Fuel, 2006, 85, 1389-1395.	3.4	18
36	Influence of Inherent Coal Mineral Matter on the Structural Characteristics of Graphite Materials Prepared from Anthracites. Energy & Fuels, 2005, 19, 263-269.	2.5	47

ANA B GARCÃA

#	Article	IF	CITATIONS
37	Structural Characterization of Graphite Materials Prepared from Anthracites of Different Characteristics:  A Comparative Analysis. Energy & Fuels, 2004, 18, 365-370.	2.5	62
38	Graphite Materials Prepared from an Anthracite:  A Structural Characterization. Energy & Fuels, 2003, 17, 1324-1329.	2.5	64
39	Dispersion of aluminum hydroxide coated Si3N4 powders with ammonium polyacrylate dispersant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 181, 69-78.	2.3	14
40	Ammonium polyacrylate adsorption on "aluminium hydroxides and oxyhydroxide―coated silicon nitride powders. Ceramics International, 2000, 26, 551-559.	2.3	2
41	Coal recovery from coal fines cleaning wastes by agglomeration with vegetable oils: effects of oil type and concentration. Fuel, 1999, 78, 753-759.	3.4	67
42	Cleaning of Spanish high-rank coals by agglomeration with vegetable oils. Fuel, 1996, 75, 885-890.	3.4	47
43	Effects of oil concentration and particle size on the cleaning of Spanish high-rank coals by agglomeration with n-heptane. Fuel, 1995, 74, 1692-1697.	3.4	35
44	The removal of trace elements from Spanish high rank coals by a selective agglomeration process. Fuel, 1994, 73, 1189-1196.	3.4	12
45	Removal of trace elements from Spanish coals by flotation. Fuel, 1993, 72, 329-335.	3.4	15
46	Influence of weathering process on the flotation response of coal. Fuel, 1991, 70, 1391-1397.	3.4	20
47	Catalytic hydrodesulfurization of a high organic sulfur turkish lignite: Amount, form, and mechanism of sulfur removal. Fuel Processing Technology, 1990, 26, 99-109.	3.7	9
48	Effects of organic sulfur content on thermolysis and hydrogenolysis of lignites. Fuel Processing Technology, 1990, 24, 179-185.	3.7	13
49	Comparative performance of impregnated molybdenum-sulphur catalysts in hydrogenation of Spanish lignite. Fuel, 1989, 68, 1613-1616.	3.4	30
50	Study of the changes in i.r. spectra bands of coal after reductive alkylation. Fuel, 1987, 66, 1715-1719.	3.4	6