List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7628879/publications.pdf Version: 2024-02-01

FENCYIALU

#	Article	IF	CITATIONS
1	Improved physicochemical and functional properties of dietary fiber from millet bran fermented by Bacillus natto. Food Chemistry, 2019, 294, 79-86.	8.2	146
2	Identification of bacillomycin D from Bacillus subtilis fmbJ and its inhibition effects against Aspergillus flavus. Food Control, 2014, 36, 8-14.	5.5	129
3	Isolation and characterization of a co-producer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World Journal of Microbiology and Biotechnology, 2006, 22, 1259-1266.	3.6	114
4	Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins, 2018, 10, 475.	3.4	99
5	Antiviral Activity of Antimicrobial Lipopeptide from Bacillus subtilis fmbj Against Pseudorabies Virus, Porcine Parvovirus, Newcastle Disease Virus and Infectious Bursal Disease Virus in Vitro. International Journal of Peptide Research and Therapeutics, 2006, 12, 373-377.	1.9	83
6	Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. Journal of Microbiology, 2014, 52, 675-680.	2.8	70
7	Identification of novel surfactin derivatives from NRPS modification of Bacillus subtilis and its antifungal activity against Fusarium moniliforme. BMC Microbiology, 2016, 16, 31.	3.3	69
8	Purification, Characterization, and Mode of Action of Plantaricin GZ1-27, a Novel Bacteriocin against <i>Bacillus cereus</i> . Journal of Agricultural and Food Chemistry, 2018, 66, 4716-4724.	5.2	69
9	Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Research, 2017, 236, 14-23.	2.2	61
10	Characterization of a novel type I l-asparaginase from Acinetobacter soli and its ability to inhibit acrylamide formation in potato chips. Journal of Bioscience and Bioengineering, 2020, 129, 672-678.	2.2	47
11	Antifungal activity mode of Aspergillus ochraceus by bacillomycin D and its inhibition of ochratoxin A (OTA) production in food samples. Food Control, 2016, 60, 281-288.	5.5	40
12	Influence of different factors on biofilm formation of Listeria monocytogenes and the regulation of cheY gene. Food Research International, 2020, 137, 109405.	6.2	40
13	Membrane-Active Amphipathic Peptide WRL3 with <i>in Vitro</i> Antibiofilm Capability and <i>in Vivo</i> Efficacy in Treating Methicillin-Resistant <i>Staphylococcus aureus</i> Burn Wound Infections. ACS Infectious Diseases, 2017, 3, 820-832.	3.8	38
14	Biochemical characterization of a novel l-asparaginase from Bacillus megaterium H-1 and its application in French fries. Food Research International, 2015, 77, 527-533.	6.2	37
15	Isolation and Identification of an Endophytic Strain EJS-3 Producing Novel Fibrinolytic Enzymes. Current Microbiology, 2007, 54, 435-439.	2.2	36
16	Improving Iturin A Production of Bacillus amyloliquefaciens by Genome Shuffling and Its Inhibition Against Saccharomyces cerevisiae in Orange Juice. Frontiers in Microbiology, 2018, 9, 2683.	3.5	33
17	Preparation of Gallic Acid-Grafted Chitosan Using Recombinant Bacterial Laccase and Its Application in Chilled Meat Preservation. Frontiers in Microbiology, 2018, 9, 1729.	3.5	33
18	Detoxification of Deoxynivalenol by a Mixed Culture of Soil Bacteria With 3-epi-Deoxynivalenol as the Main Intermediate. Frontiers in Microbiology, 2019, 10, 2172.	3.5	33

#	Article	IF	CITATIONS
19	Discovery of a Novel Antimicrobial Lipopeptide, Brevibacillin V, from <i>Brevibacillus laterosporus</i> fmb70 and Its Application on the Preservation of Skim Milk. Journal of Agricultural and Food Chemistry, 2019, 67, 12452-12460.	5.2	33
20	A class ⢠bacteriocin with broad-spectrum antibacterial activity from Lactobacillus acidophilus NX2-6 and its preservation in milk and cheese. Food Control, 2021, 121, 107597.	5.5	33
21	Effect of Tea Polyphenols on Curdlan/Chitosan Blending Film Properties and Its Application to Chilled Meat Preservation. Coatings, 2019, 9, 262.	2.6	32
22	Preparation of chitosan/curdlan/carboxymethyl cellulose blended film and its characterization. Journal of Food Science and Technology, 2019, 56, 5396-5404.	2.8	31
23	Improvement of the Nutritional Quality and Fibrinolytic Enzyme Activity of Soybean Meal by Fermentation of <i>B acillus subtilis</i> . Journal of Food Processing and Preservation, 2015, 39, 1235-1242.	2.0	30
24	Development and application of a sensitive, rapid, and reliable immunomagnetic separation-PCR detection method for Cronobacter spp Journal of Dairy Science, 2017, 100, 961-969.	3.4	29
25	Genomics-Inspired Discovery of Three Antibacterial Active Metabolites, Aurantinins B, C, and D from Compost-Associated <i>Bacillus subtilis</i> fmb60. Journal of Agricultural and Food Chemistry, 2016, 64, 8811-8820.	5.2	28
26	Screening the Main Factors Affecting Extraction of the Antimicrobial Substance from Bacillus sp. fmbJ using the Plackett–Burman Method. World Journal of Microbiology and Biotechnology, 2005, 21, 925-928.	3.6	27
27	Characterization of Deoxynivalenol Detoxification by Lactobacillus paracasei LHZ-1 Isolated from Yogurt. Journal of Food Protection, 2019, 82, 1292-1299.	1.7	27
28	ldentification and characterization of <i>Streptomyces flavogriseus</i> NJ-4 as a novel producer of actinomycin D and holomycin. PeerJ, 2017, 5, e3601.	2.0	27
29	Newly Effective Milk-Clotting Enzyme from <i>Bacillus subtilis</i> and Its Application in Cheese Making. Journal of Agricultural and Food Chemistry, 2018, 66, 6162-6169.	5.2	24
30	Knockout of <i>rapC</i> Improves the Bacillomycin D Yield Based on <i>De Novo</i> Genome Sequencing of <i>Bacillus amyloliquefaciens</i> fmbJ. Journal of Agricultural and Food Chemistry, 2018, 66, 4422-4430.	5.2	23
31	Growth inhibition of Fusarium graminearum and reduction of deoxynivalenol production in wheat grain by bacillomycin D. Journal of Stored Products Research, 2018, 75, 21-28.	2.6	23
32	Enhanced Expression of Pullulanase in Bacillus subtilis by New Strong Promoters Mined From Transcriptome Data, Both Alone and in Combination. Frontiers in Microbiology, 2018, 9, 2635.	3.5	21
33	Transcriptomic and proteomic profiling response of methicillin-resistant Staphylococcus aureus (MRSA) to a novel bacteriocin, plantaricin GZ1-27 and its inhibition of biofilm formation. Applied Microbiology and Biotechnology, 2020, 104, 7957-7970.	3.6	21
34	Characterization of a Novel L-Asparaginase from Mycobacterium gordonae with Acrylamide Mitigation Potential. Foods, 2021, 10, 2819.	4.3	21
35	Co-expression of alcohol dehydrogenase and aldehyde dehydrogenase in Bacillus subtilis for alcohol detoxification. Food and Chemical Toxicology, 2020, 135, 110890.	3.6	19
36	Overproduction of lipoxygenase from Pseudomonas aeruginosa in Escherichia coli by auto-induction expression and its application in triphenylmethane dyes degradation. Journal of Bioscience and Bioengineering, 2020, 129, 327-332.	2.2	18

#	Article	IF	CITATIONS
37	Bacillomycin D effectively controls growth of Malassezia globosa by disrupting the cell membrane. Applied Microbiology and Biotechnology, 2020, 104, 3529-3540.	3.6	18
38	Lipase-catalysed acidolysis of lard with caprylic acid to produce structured lipid. International Journal of Food Science and Technology, 2006, 41, 1027-1032.	2.7	17
39	Expression, purification, and characterization of a novel acidic Lipoxygenase from Myxococcus xanthus. Protein Expression and Purification, 2017, 138, 13-17.	1.3	17
40	Improvement of the activity of l-asparaginase I improvement of the catalytic activity of l-asparaginase I from Bacillus megaterium H-1 by inÂvitro directed evolution. Journal of Bioscience and Bioengineering, 2019, 128, 683-689.	2.2	17
41	Non-classical secretion of a type I L-asparaginase in Bacillus subtilis. International Journal of Biological Macromolecules, 2021, 180, 677-683.	7.5	17
42	Consensus design for improved thermostability of lipoxygenase from Anabaena sp. PCC 7120. BMC Biotechnology, 2018, 18, 57.	3.3	16
43	Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil. World Journal of Microbiology and Biotechnology, 2011, 27, 1803-1807.	3.6	15
44	Bacillomycin D inhibits growth of Rhizopus stolonifer and induces defense-related mechanism in cherry tomato. Applied Microbiology and Biotechnology, 2019, 103, 7663-7674.	3.6	15
45	Whey protein isolate with improved film properties through crossâ€linking catalyzed by small laccase from <i>Streptomyces coelicolor</i> . Journal of the Science of Food and Agriculture, 2018, 98, 3843-3850.	3.5	14
46	Preliminary structure, antioxidant and immunostimulatory activities of a polysaccharide fraction from Artemisia selengensis Turcz. International Journal of Biological Macromolecules, 2020, 143, 842-849.	7.5	14
47	Glycoglycerolipids from the leaves of Perilla frutescens (L.) Britton (Labiatae) and their anti-inflammatory activities in lipopolysaccharide-stimulated RAW264.7Âcells. Phytochemistry, 2021, 184, 112679.	2.9	14
48	Structures of <scp>l</scp> -asparaginase from <i>Bacillus licheniformis</i> Reveal an Essential Residue for its Substrate Stereoselectivity. Journal of Agricultural and Food Chemistry, 2021, 69, 223-231.	5.2	14
49	Iturin A Induces Resistance and Improves the Quality and Safety of Harvested Cherry Tomato. Molecules, 2021, 26, 6905.	3.8	14
50	Mining of novel species-specific primers for PCR detection of Listeria monocytogenes based on genomic approach. World Journal of Microbiology and Biotechnology, 2015, 31, 1955-1966.	3.6	13
51	Acetate Activates <i>Lactobacillus</i> Bacteriocin Synthesis by Controlling Quorum Sensing. Applied and Environmental Microbiology, 2021, 87, e0072021.	3.1	12
52	A novel plantaricin 827 effectively inhibits Staphylococcus aureus and extends shelf life of skim milk. LWT - Food Science and Technology, 2022, 154, 112849.	5.2	12
53	Epimerization of Deoxynivalenol by the Devosia Strain A6-243 Assisted by Pyrroloquinoline Quinone. Toxins, 2022, 14, 16.	3.4	12
54	Structure–Function Analysis of a Quinone-Dependent Dehydrogenase Capable of Deoxynivalenol Detoxification. Journal of Agricultural and Food Chemistry, 2022, 70, 6764-6774.	5.2	10

#	Article	IF	CITATIONS
55	Isolation and identification of a fungal strain QY229 producing milk-clotting enzyme. European Food Research and Technology, 2011, 232, 861-866.	3.3	9
56	Engineering of a thermostable <i>î²</i> â€1,3â€1,4â€glucanase from <i>Bacillus altitudinis</i> <scp>YC</scp> â€9 to improve its catalytic efficiency. Journal of the Science of Food and Agriculture, 2016, 96, 109-115.	3.5	9
57	Novel Development of a qPCR Assay Based on the rpoB Gene for Rapid Detection of Cronobacter spp Current Microbiology, 2016, 72, 436-443.	2.2	9
58	<i>In Silico</i> Development of Novel Chimeric Lysins with Highly Specific Inhibition against <i>Salmonella</i> by Computer-Aided Design. Journal of Agricultural and Food Chemistry, 2021, 69, 3751-3760.	5.2	9
59	Maltose effective improving production and regulatory biosynthesis of plantaricin EF in Lactobacillus plantarum 163. Applied Microbiology and Biotechnology, 2021, 105, 2713-2723.	3.6	9
60	A Novel Class IIb Bacteriocin-Plantaricin EmF Effectively Inhibits <i>Listeria monocytogenes</i> and Extends the Shelf Life of Beef in Combination with Chitosan. Journal of Agricultural and Food Chemistry, 2022, 70, 2187-2196.	5.2	9
61	The antibacterial activity of plantaricin GZ1–27 against MRSA and its bio-preservative effect on chilled pork in combination with chitosan. International Journal of Food Microbiology, 2022, 365, 109539.	4.7	9
62	Effect of Plantaricin 163 in Combination with Thymol and Surfactin on Crucian Carp (Carassius) Tj ETQq0 0 0 rgBT	Overloch 1.7	₹ 10 Tf 50 4
63	<i>Lactobacillus acidophilus</i> NX2-6 Improved High-Fat Diet-Induced Glucose Metabolism Disorder Independent of Promotion of Insulin Secretion in Mice. Journal of Agricultural and Food Chemistry, 2021, 69, 15598-15610.	5.2	8
64	Cis-Element Engineering Promotes the Expression of Bacillus subtilis Type I L-Asparaginase and Its Application in Food. International Journal of Molecular Sciences, 2022, 23, 6588.	4.1	8
65	Acetate and autoâ€inducing peptide are independent triggers of quorum sensing in <i>Lactobacillus plantarum</i> . Molecular Microbiology, 2021, 116, 298-310.	2.5	7
66	Detection of Exiguobacterium spp. and E. acetylicum on fresh-cut leafy vegetables by a multiplex PCR assay. Journal of Microbiological Methods, 2021, 180, 106100.	1.6	6
67	Screening of Sourdough Starter Strains and Improvements in the Quality of Whole Wheat Steamed Bread. Molecules, 2022, 27, 3510.	3.8	5
68	Characterization of a single-chain variable fragment specific to Cronobacter spp. from hybridoma based on outer membrane protein A. Journal of Microbiological Methods, 2016, 129, 136-143.	1.6	4
69	Novel <i>Bacillus</i> Milk-Clotting Enzyme Produces Diverse Functional Peptides in Semihard Cheese. Journal of Agricultural and Food Chemistry, 2021, 69, 2784-2792.	5.2	4
70	TetR-Type Regulator Lp_2642 Positively Regulates Plantaricin EF Production Based on Genome-Wide Transcriptome Sequencing of <i>Lactiplantibacillus plantarum</i> 163. Journal of Agricultural and Food Chemistry, 2022, 70, 4362-4372.	5.2	3
71	Anti-toxicogenic fungi and toxin-reducing effects of bacillomycin D in combination with fungicides. Toxicon, 2022, 216, 107-113.	1.6	3
72	Genome Mining, Heterologous Expression, Antibacterial and Antioxidant Activities of Lipoamides and Amicoumacins from Compost-Associated Bacillus subtilis fmb60. Molecules, 2021, 26, 1892.	3.8	2