Quan Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7628666/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Stable Silver Nanoplates for Surface Plasmon Resonance Biosensing. Angewandte Chemie - International Edition, 2012, 51, 5629-5633.	13.8	313
2	New trends in instrumental design for surface plasmon resonance-based biosensors. Biosensors and Bioelectronics, 2011, 26, 1815-1824.	10.1	270
3	Direct quantification of cancerous exosomes via surface plasmon resonance with dual gold nanoparticle-assisted signal amplification. Biosensors and Bioelectronics, 2019, 135, 129-136.	10.1	154
4	Surface Plasmon Resonance: Material and Interface Design for Universal Accessibility. Analytical Chemistry, 2018, 90, 19-39.	6.5	113
5	An enzyme-free surface plasmon resonance biosensor for real-time detecting microRNA based on allosteric effect of mismatched catalytic hairpin assembly. Biosensors and Bioelectronics, 2016, 77, 435-441.	10.1	90
6	Sensitivity comparison of surface plasmon resonance and plasmon-waveguide resonance biosensors. Sensors and Actuators B: Chemical, 2011, 156, 169-175.	7.8	86
7	Nanoscale Glassification of Gold Substrates for Surface Plasmon Resonance Analysis of Protein Toxins with Supported Lipid Membranes. Analytical Chemistry, 2006, 78, 596-603.	6.5	85
8	A novel surface plasmon resonance biosensor for enzyme-free and highly sensitive detection of microRNA based on multi component nucleic acid enzyme (MNAzyme)-mediated catalyzed hairpin assembly. Biosensors and Bioelectronics, 2016, 80, 98-104.	10.1	79
9	Regenerable Tethered Bilayer Lipid Membrane Arrays for Multiplexed Label-Free Analysis of Lipidâ [°] Protein Interactions on Poly(dimethylsiloxane) Microchips Using SPR Imaging. Analytical Chemistry, 2009, 81, 1146-1153.	6.5	78
10	An enzyme-free surface plasmon resonance biosensing strategy for detection of DNA and small molecule based on nonlinear hybridization chain reaction. Biosensors and Bioelectronics, 2017, 87, 345-351.	10.1	77
11	Efficient label-free chemiluminescent immunosensor based on dual functional cupric oxide nanorods as peroxidase mimics. Biosensors and Bioelectronics, 2018, 100, 304-311.	10.1	77
12	Detection of Membrane-Binding Proteins by Surface Plasmon Resonance with an All-Aqueous Amplification Scheme. Analytical Chemistry, 2012, 84, 3179-3186.	6.5	76
13	Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Analytica Chimica Acta, 2015, 874, 59-65.	5.4	73
14	Interface design and multiplexed analysis with surface plasmon resonance (SPR) spectroscopy and SPR imaging. Analyst, The, 2010, 135, 2759.	3.5	67
15	Analysis of μ-Contact Printed Protein Patterns by SPR Imaging with a LED Light Source. Langmuir, 2004, 20, 11141-11148.	3.5	64
16	Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles. Sensors and Actuators B: Chemical, 2007, 126, 691-699.	7.8	64
17	Dual-Mode Optical Sensing of Organic Vapors and Proteins with Polydiacetylene (PDA)-Embedded Electrospun Nanofibers. Langmuir, 2014, 30, 9616-9622.	3.5	63
18	High-sensitive and multiplex biosensing assay of NSCLC-derived exosomes via different recognition sites based on SPRi array. Biosensors and Bioelectronics, 2020, 154, 112066.	10.1	63

#	Article	IF	CITATIONS
19	Highly Sensitive Detection of Protein Toxins by Surface Plasmon Resonance with Biotinylation-Based Inline Atom Transfer Radical Polymerization Amplification. Analytical Chemistry, 2010, 82, 3679-3685.	6.5	57
20	Advances in Optical Sensing and Bioanalysis Enabled by 3D Printing. ACS Sensors, 2018, 3, 2475-2491.	7.8	56
21	Platinum Nanoparticle-decorated Graphene Oxide@Polystyrene Nanospheres for Label-free Electrochemical Immunosensing of Tumor Markers. ACS Sustainable Chemistry and Engineering, 2020, 8, 4392-4399.	6.7	55
22	Surface Plasmon Resonance Imaging Analysis of Protein-Receptor Binding in Supported Membrane Arrays on Gold Substrates with Calcinated Silicate Films. Journal of the American Chemical Society, 2006, 128, 9590-9591.	13.7	53
23	Photocatalytically Patterned TiO ₂ Arrays for On-Plate Selective Enrichment of Phosphopeptides and Direct MALDI MS Analysis. Analytical Chemistry, 2011, 83, 1624-1631.	6.5	52
24	Protein and Small Molecule Recognition Properties of Deep Cavitands in a Supported Lipid Membrane Determined by Calcination-Enhanced SPR Spectroscopy. Journal of the American Chemical Society, 2010, 132, 10383-10390.	13.7	51
25	Development of a "Membrane Cloaking―Method for Amperometric Enzyme Immunoassay and Surface Plasmon Resonance Analysis of Proteins in Serum Samples. Analytical Chemistry, 2007, 79, 899-907.	6.5	49
26	Desorption and ionization mechanisms and signal enhancement in surface assisted laser desorption ionization mass spectrometry (SALDI-MS). Applied Spectroscopy Reviews, 2020, 55, 220-242.	6.7	49
27	MoS2/Ag nanohybrid: A novel matrix with synergistic effect for small molecule drugs analysis by negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Analytica Chimica Acta, 2016, 937, 87-95.	5.4	48
28	Detection of low levels of Escherichia coli in fresh spinach by surface plasmon resonance spectroscopy with a TMB-based enzymatic signal enhancement method. Sensors and Actuators B: Chemical, 2010, 145, 613-619.	7.8	47
29	Plasmonic Sensing with 3D Printed Optics. Analytical Chemistry, 2017, 89, 12626-12630.	6.5	42
30	Ultrathin Calcinated Films on a Gold Surface for Highly Effective Laser Desorption/Ionization of Biomolecules. Analytical Chemistry, 2010, 82, 5088-5094.	6.5	39
31	Patterned Resonance Plasmonic Microarrays for High-Performance SPR Imaging. Analytical Chemistry, 2011, 83, 3147-3152.	6.5	39
32	On-Plate Desalting and SALDI-MS Analysis of Peptides with Hydrophobic Silicate Nanofilms on a Gold Substrate. Analytical Chemistry, 2010, 82, 9211-9220.	6.5	38
33	Calcinated gold nanoparticle arrays for on-chip, multiplexed and matrix-free mass spectrometric analysis of peptides and small molecules. Nanoscale, 2016, 8, 1665-1675.	5.6	37
34	Plasmonic Biosensing with Aluminum Thin Films under the Kretschmann Configuration. Analytical Chemistry, 2020, 92, 8654-8659.	6.5	36
35	Determination of the invA gene of Salmonella using surface plasmon resonance along with streptavidin aptamer amplification. Mikrochimica Acta, 2015, 182, 289-296.	5.0	32
36	FRET Detection of Proteins Using Fluorescently Doped Electrospun Nanofibers and Pattern Recognition. Langmuir, 2011, 27, 6401-6408.	3.5	31

#	Article	IF	CITATIONS
37	Graphene Oxide Nanoprisms for Sensitive Detection of Environmentally Important Aromatic Compounds with SERS. ACS Sensors, 2017, 2, 817-827.	7.8	30
38	Functional lipid microstructures immobilized on a gold electrode for voltammetric biosensing of cholera toxin. Analyst, The, 2004, 129, 309.	3.5	29
39	Silver decahedral nanoparticles empowered SPR imaging-SELEX for high throughput screening of aptamers with real-time assessment. Biosensors and Bioelectronics, 2018, 109, 206-213.	10.1	29
40	Fabrication and Characterization of a Sialoside-Based Carbohydrate Microarray Biointerface for Protein Binding Analysis with Surface Plasmon Resonance Imaging. ACS Applied Materials & Interfaces, 2009, 1, 1755-1762.	8.0	28
41	Characterizing Stability Properties of Supported Bilayer Membranes on Nanoglassified Substrates Using Surface Plasmon Resonance. Langmuir, 2008, 24, 8127-8133.	3.5	23
42	Fabrication of Fracture-Free Nanoglassified Substrates by Layer-by-Layer Deposition with a Paint Gun Technique for Real-Time Monitoring of Proteinâ^'Lipid Interactions. Langmuir, 2009, 25, 3075-3082.	3.5	23
43	On-Demand Formation of Supported Lipid Membrane Arrays by Trehalose-Assisted Vesicle Delivery for SPR Imaging. ACS Applied Materials & Interfaces, 2015, 7, 17122-17130.	8.0	23
44	DNA Linkers and Diluents for Ultrastable Gold Nanoparticle Bioconjugates in Multiplexed Assay Development. Analytical Chemistry, 2017, 89, 4272-4279.	6.5	23
45	Ultrasensitive Detection of Bacterial Protein Toxins on Patterned Microarray via Surface Plasmon Resonance Imaging with Signal Amplification by Conjugate Nanoparticle Clusters. ACS Sensors, 2018, 3, 1639-1646.	7.8	23
46	Development of Air-Stable, Supported Membrane Arrays with Photolithography for Study of Phosphoinositideâ^Protein Interactions Using Surface Plasmon Resonance Imaging. Analytical Chemistry, 2008, 80, 6397-6404.	6.5	22
47	Thermoresponsive Arrays Patterned via Photoclick Chemistry: Smart MALDI Plate for Protein Digest Enrichment, Desalting, and Direct MS Analysis. ACS Applied Materials & Interfaces, 2018, 10, 1324-1333.	8.0	21
48	Antifouling Lipid Membranes over Protein A for Orientation-Controlled Immunosensing in Undiluted Serum and Plasma. ACS Sensors, 2019, 4, 1774-1782.	7.8	21
49	Expanding the scope of chemiluminescence in bioanalysis with functional nanomaterials. Journal of Materials Chemistry B, 2019, 7, 7257-7266.	5.8	21
50	Etched Glass Microarrays with Differential Resonance for Enhanced Contrast and Sensitivity of Surface Plasmon Resonance Imaging Analysis. Analytical Chemistry, 2011, 83, 5936-5943.	6.5	19
51	A Membraneâ€Bound Synthetic Receptor that Promotes Growth of a Polymeric Coating at the Bilayer–Water Interface. Angewandte Chemie - International Edition, 2012, 51, 7748-7751.	13.8	18
52	Detection of Multiple Sclerosis Biomarkers in Serum by Ganglioside Microarrays and Surface Plasmon Resonance Imaging. ACS Sensors, 2020, 5, 3617-3626.	7.8	18
53	Mix and Match: Coassembly of Amphiphilic Dendrimers and Phospholipids Creates Robust, Modular, and Controllable Interfaces. ACS Applied Materials & amp; Interfaces, 2017, 9, 1029-1035.	8.0	17
54	Multiplex immunoassay of chicken cytokines via highly-sensitive chemiluminescent imaging array. Analytica Chimica Acta, 2019, 1049, 213-218.	5.4	17

#	Article	IF	CITATIONS
55	Nanoglassified, Optically-Active Monolayer Films of Gold Nanoparticles for in Situ Orthogonal Detection by Localized Surface Plasmon Resonance and Surface-Assisted Laser Desorption/Ionization-MS. Analytical Chemistry, 2014, 86, 11942-11945.	6.5	16
56	Labeled Protein Recognition at a Membrane Bilayer Interface by Embedded Synthetic Receptors. Langmuir, 2014, 30, 10161-10166.	3.5	16
57	Lipidomic Profiling of Algae with Microarray MALDI-MS toward Ecotoxicological Monitoring of Herbicide Exposure. Environmental Science & Technology, 2021, 55, 10558-10568.	10.0	16
58	Quantitation of Alpha-Glucosidase Activity Using Fluorinated Carbohydrate Array and MALDI-TOF-MS. ACS Applied Materials & Interfaces, 2016, 8, 2872-2878.	8.0	14
59	Plasmonic Gold Templates Enhancing Single Cell Lipidomic Analysis of Microorganisms. Analytical Chemistry, 2020, 92, 6213-6217.	6.5	14
60	Amino Acid-Based Imidazole Ionic Liquid: A Novel Soft Matrix for Electrochemical Biosensing Applications. ACS Sustainable Chemistry and Engineering, 2021, 9, 4157-4166.	6.7	14
61	Anionic deep cavitands enable the adhesion of unmodified proteins at a membrane bilayer. Soft Matter, 2014, 10, 9651-9656.	2.7	13
62	Chemoselective ligation reaction of N-acetylglucosamine (NAG) with hydrazide functional probes to determine galactosyltransferase activity by MALDI mass spectrometry. Analyst, The, 2017, 142, 2654-2662.	3.5	13
63	Protein Recognition by a Self-Assembled Deep Cavitand Monolayer on a Gold Substrate. Langmuir, 2012, 28, 1391-1398.	3.5	11
64	Bioinspired assemblies and plasmonic interfaces for electrochemical biosensing. Journal of Electroanalytical Chemistry, 2016, 781, 136-146.	3.8	10
65	Tunable Enhancement of a Graphene/Polyaniline/Poly(ethylene oxide) Composite Electrospun Nanofiber Gas Sensor. Journal of Analysis and Testing, 2017, 1, 1.	5.1	10
66	Gold nanoparticle-coupled liposomes for enhanced plasmonic biosensing. Sensors and Actuators Reports, 2020, 2, 100023.	4.4	10
67	Cell and Protein Recognition at a Supported Bilayer Interface via In Situ Cavitand-Mediated Functional Polymer Growth. Langmuir, 2015, 31, 11152-11157.	3.5	9
68	Graphene Oxide Nanocarriers for Fluorescent Sensing of Calcium Ion Accumulation and Direct Assessment of Ion-Induced Enzymatic Activities in Cells. ACS Applied Nano Materials, 2019, 2, 5594-5603.	5.0	7
69	Selective protein recognition in supported lipid bilayer arrays by tailored, dual-mode deep cavitand hosts. Soft Matter, 2017, 13, 3966-3974.	2.7	6
70	Plasmon-Enhanced Fluorescence in Electrospun Nanofibers of Polydiacetylenes Infused with Silver Nanoparticles. Langmuir, 2021, 37, 14920-14929.	3.5	5
71	Plasmonic nanodisc arrays on calcinated titania for multimodal analysis of phosphorylated peptides. RSC Advances, 2017, 7, 48068-48076.	3.6	3
72	The determination of Sulfobutylether <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si0001.svg"><mml:mi>β</mml:mi></mml:math> -Cyclodextrin Sodium (SBECD) by LC-MS/MS and its application in remdesivir pharmacokinetics study for pediatric patients. Journal of Pharmaceutical and Biomedical Analysis, 2022, 212, 114646.	2.8	3

#	Article	IF	CITATIONS
73	Probing Herbicide Toxicity to Algae (<i>Selenastrum capricornutum</i>) by Lipid Profiling with Machine Learning and Microchip/MALDI-TOF Mass Spectrometry. Chemical Research in Toxicology, 2022, 35, 606-615.	3.3	3
74	Surface plasmon resonance imaging (SPRi) in combination with machine learning for microarray analysis of multiple sclerosis biomarkers in whole serum. Biosensors and Bioelectronics: X, 2022, 10, 100127.	1.7	3
75	Assembly and Characterization of Protein Resistant Planar Bilayers in PDMS Microfluidic Devices. Materials Research Society Symposia Proceedings, 2003, 774, 721.	0.1	1
76	Surface Plasmon Resonance Spectroscopic Study on Pore-Forming Behavior of Streptolysin O on Supported Phospholipid Bilayers. Materials Research Society Symposia Proceedings, 2003, 774, 7191.	0.1	0
77	Functional Amphiphilic and Bolaamphiphilic Poly(diacetylene) Assemblies with Controlled Optical and Morphological Properties. ACS Symposium Series, 2004, , 96-109.	0.5	0