Zhouchuan Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7628575/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth and Planetary Science Letters, 2015, 415, 16-24.	1.8	229
2	Structural heterogeneity in the megathrust zone and mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0). Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	147
3	Seismic heterogeneity and anisotropy of the Honshu arc from the Japan Trench to the Japan Sea. Geophysical Journal International, 2011, 184, 1428-1444.	1.0	118
4	Mantle structure and dynamics beneath SE Tibet revealed by new seismic images. Earth and Planetary Science Letters, 2015, 411, 100-111.	1.8	113
5	Seismic anisotropy and mantle dynamics beneath China. Earth and Planetary Science Letters, 2011, 306, 105-117.	1.8	112
6	<i>P</i> wave tomography and anisotropy beneath Southeast Asia: Insight into mantle dynamics. Journal of Geophysical Research: Solid Earth, 2015, 120, 5154-5174.	1.4	110
7	Shear wave anisotropy in the crust, mantle wedge, and subducting Pacific slab under northeast Japan. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	79
8	Shear wave splitting in the southern margin of the Ordos Block, north China. Geophysical Research Letters, 2008, 35, .	1.5	58
9	On the tradeâ€off between seismic anisotropy and heterogeneity: Numerical simulations and application to Northeast Japan. Journal of Geophysical Research: Solid Earth, 2015, 120, 3255-3277.	1.4	54
10	Aseismic Deep Slab and Mantle Flow Beneath Alaska: Insight From Anisotropic Tomography. Journal of Geophysical Research: Solid Earth, 2019, 124, 1700-1724.	1.4	53
11	Upper mantle structure and dynamics beneath Southeast China. Physics of the Earth and Planetary Interiors, 2010, 182, 161-169.	0.7	52
12	Mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and tsunami: Insight from seismic tomography. Journal of Asian Earth Sciences, 2013, 70-71, 160-168.	1.0	51
13	Aseismic deep subduction of the Philippine Sea plate and slab window. Journal of Asian Earth Sciences, 2013, 75, 82-94.	1.0	50
14	Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear-wave splitting. Earth and Planetary Science Letters, 2017, 478, 66-75.	1.8	49
15	Threeâ€dimensional <i>P</i> wave azimuthal anisotropy in the lithosphere beneath China. Journal of Geophysical Research: Solid Earth, 2014, 119, 5686-5712.	1.4	47
16	Teleseismic shear-wave splitting in SE Tibet: Insight into complex crust and upper-mantle deformation. Earth and Planetary Science Letters, 2015, 432, 354-362.	1.8	47
17	Mapping P-wave azimuthal anisotropy in the crust and upper mantle beneath the United States. Physics of the Earth and Planetary Interiors, 2013, 225, 28-40.	0.7	45
18	Insight into the subducted Indian slab and origin of the Tengchong volcano in SE Tibet from receiver function analysis. Earth and Planetary Science Letters, 2018, 482, 567-579.	1.8	44

ZHOUCHUAN HUANG

#	Article	IF	CITATIONS
19	<i>P</i> and <i>S</i> Wave Tomography Beneath the SE Tibetan Plateau: Evidence for Lithospheric Delamination. Journal of Geophysical Research: Solid Earth, 2019, 124, 10292-10308.	1.4	43
20	Frequency-dependent shear-wave splitting and multilayer anisotropy in northeast Japan. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	36
21	<i>P</i> Wave Anisotropic Tomography of the SE Tibetan Plateau: Evidence for the Crustal and Upperâ€Mantle Deformations. Journal of Geophysical Research: Solid Earth, 2018, 123, 8957-8978.	1.4	35
22	Seismic imaging of the Amur–Okhotsk plate boundary zone in the Japan Sea. Physics of the Earth and Planetary Interiors, 2011, 188, 82-95.	0.7	31
23	Relocating the 2011 Tohoku-oki earthquakes (M 6.0–9.0). Tectonophysics, 2013, 586, 35-45.	0.9	30
24	Sharp Lateral Moho Variations Across the SE Tibetan Margin and Their Implications for Plateau Growth. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018117.	1.4	27
25	Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using P and PmP data. Geophysical Journal International, 2018, 214, 1151-1163.	1.0	26
26	Shear wave splitting across the Ailao Shanâ€Red River fault zone, SW China. Geophysical Research Letters, 2007, 34, .	1.5	23
27	Structural Heterogeneity and Anisotropy in the Source Zone of the 2018 Eastern Iburi Earthquake in Hokkaido, Japan. Journal of Geophysical Research: Solid Earth, 2019, 124, 7052-7066.	1.4	23
28	Crustal stress field in Yunnan: implication for crust-mantle coupling. Earthquake Science, 2016, 29, 105-115.	0.4	22
29	Layered crustal azimuthal anisotropy beneath the northeastern Tibetan Plateau revealed by Rayleigh-wave Eikonal tomography. Earth and Planetary Science Letters, 2021, 563, 116891.	1.8	22
30	P-wave tomography, anisotropy and seismotectonics in the eastern margin of Japan Sea. Tectonophysics, 2010, 489, 177-188.	0.9	18
31	P and S wave tomography of east-central China: insight into past and present mantle dynamics. Tectonophysics, 2021, 809, 228859.	0.9	17
32	Crustal structure beneath the Weihe Graben in central China: Evidence for the tectonic regime transformation in the Cenozoic. Journal of Asian Earth Sciences, 2014, 81, 105-114.	1.0	16
33	Imaging the Mantle Lithosphere below the China cratons using S-to-p converted waves. Tectonophysics, 2019, 754, 73-79.	0.9	16
34	<i>P</i> Wave Azimuthal Anisotropic Tomography in Northern Chile: Insight Into Deformation in the Subduction Zone. Journal of Geophysical Research: Solid Earth, 2019, 124, 742-765.	1.4	16
35	Focal mechanism and stress field in the northeastern Tibetan Plateau: insight into layered crustal deformations. Geophysical Journal International, 2019, 218, 2066-2078.	1.0	15
36	Layered crustal anisotropy and deformation in the SE Tibetan plateau revealed by Markov-Chain-Monte-Carlo inversion of receiver functions. Physics of the Earth and Planetary Interiors, 2020, 306, 106522.	0.7	15

ZHOUCHUAN HUANG

#	Article	IF	CITATIONS
37	Tomography, Seismotectonics, and Mantle Dynamics of Central and Eastern United States. Journal of Geophysical Research: Solid Earth, 2019, 124, 8890-8907.	1.4	13
38	lsotropic and Anisotropic <i>P</i> Wave Velocity Structures of the Crust and Uppermost Mantle Beneath Turkey. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019566.	1.4	13
39	Structural Heterogeneity in Source Zones of the 2018 Anchorage Intraslab Earthquake and the 1964 Alaska Megathrust Earthquake. Geochemistry, Geophysics, Geosystems, 2020, 21, e2019GC008812.	1.0	13
40	Mantle dynamics in the SE Tibetan Plateau revealed by teleseismic shear-wave splitting analysis. Physics of the Earth and Planetary Interiors, 2021, 313, 106687.	0.7	13
41	Stress Field in the 2016 Kumamoto Earthquake (<i>M</i> 7.3) Area. Journal of Geophysical Research: Solid Earth, 2019, 124, 2638-2652.	1.4	12
42	Anisotropic 3â€Ð Ray Tracing and Its Application to Japan Subduction Zone. Journal of Geophysical Research: Solid Earth, 2018, 123, 4088-4108.	1.4	11
43	Seismic structure and subduction dynamics of the western Japan arc. Tectonophysics, 2021, 802, 228743.	0.9	11
44	Lithospheric structures beneath the western Mongolian Plateau: Insight from S wave receiver function. Journal of Asian Earth Sciences, 2021, 212, 104733.	1.0	11
45	Distinct lateral variations of upper mantle anisotropy beneath eastern China revealed by shearâ€wave splitting. Geochemistry, Geophysics, Geosystems, 2013, 14, 1842-1855.	1.0	10
46	Upperâ€Mantle Anisotropy and Dynamics Beneath Northeast Asia: Insight From SKS and Local <i>S</i> Splitting Analysis. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009160.	1.0	9
47	SplitRFLab: A MATLAB GUI toolbox for receiver function analysis based on SplitLab. Earthquake Science, 2016, 29, 17-26.	0.4	8
48	Lateral variation of the mantle transition zone beneath the Tibetan Plateau: Insight into thermal processes during Indian–Asian collision. Physics of the Earth and Planetary Interiors, 2020, 301, 106452.	0.7	7
49	Stress field in the 2008 Iwate-Miyagi earthquake (M7.2) area. Geochemistry, Geophysics, Geosystems, 2011, 12, n/a-n/a.	1.0	6
50	Seismic tomography in the southern margin of the Sichuan Basin: Insight into the plateau-craton interaction and seismotectonics in the SE Tibetan Plateau. Journal of Asian Earth Sciences, 2020, 199, 104464.	1.0	6
51	Tectonic evolution of the eastern margin of the Tibetan plateau: Insight from crustal structures using P wave receiver functions. Journal of Asian Earth Sciences, 2020, 191, 104230.	1.0	5
52	A Method for Estimating the Crustal Azimuthal Anisotropy and Moho Orientation Simultaneously Using Receiver Functions. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018405.	1.4	4
53	Crustal and Uppermost Mantle Heterogeneities Across the Ailaoshan Red River Shear Zone, SE Tibet: Implications for Cenozoic Magmatic Activity. Journal of Geophysical Research: Solid Earth, 2022, 127, . 	1.4	4
54	Rayleigh wave tomography of central and southern Mongolia. Tectonophysics, 2022, 836, 229426.	0.9	2

#	Article	IF	CITATIONS
55	Insight into the NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shearâ€wave splitting. Acta Geologica Sinica, 2019, 93, 143-143.	0.8	0