Karine Auclair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7628391/publications.pdf

Version: 2024-02-01

304368 276539 1,952 60 22 41 h-index citations g-index papers 74 74 74 2432 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Electrophilic properties of itaconate and derivatives regulate theÂlκBζ–ATF3 inflammatory axis. Nature, 2018, 556, 501-504.	13.7	438
2	Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages. Nature Metabolism, 2020, 2, 594-602.	5.1	163
3	Progress towards the easier use of P450 enzymes. Molecular BioSystems, 2006, 2, 462.	2.9	80
4	Synthesis and Structureâ^Activity Relationships of Truncated Bisubstrate Inhibitors of Aminoglycoside 6â€~-N-Acetyltransferases. Journal of Medicinal Chemistry, 2006, 49, 5273-5281.	2.9	74
5	Solventâ€Free Enzyme Activity: Quick, Highâ€Yielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angewandte Chemie - International Edition, 2018, 57, 2621-2624.	7.2	72
6	Enzymatic depolymerization of highly crystalline polyethylene terephthalate enabled in moist-solid reaction mixtures. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	62
7	Regio- and Chemoselective 6′-N-Derivatization of Aminoglycosides: Bisubstrate Inhibitors as Probes To Study Aminoglycoside 6′-N-Acetyltransferases. Angewandte Chemie - International Edition, 2005, 44, 6859-6862.	7.2	54
8	Replacement of Natural Cofactors by Selected Hydrogen Peroxide Donors or Organic Peroxides Results in Improved Activity for CYP3A4 and CYP2D6. ChemBioChem, 2006, 7, 916-919.	1.3	48
9	Predictable Stereoselective and Chemoselective Hydroxylations and Epoxidations with P450 3A4. Journal of the American Chemical Society, 2011, 133, 7853-7858.	6.6	47
10	Mechanoenzymatic Breakdown of Chitinous Material to <i>N</i> â€Acetylglucosamine: The Benefits of a Solventless Environment. ChemSusChem, 2019, 12, 3481-3490.	3.6	47
11	Kinetic and Structural Analysis of Bisubstrate Inhibition of the <i>Salmonella enterica </i> Aminoglycoside 6â€~ <i>N</i> -Acetyltransferase [,] . Biochemistry, 2008, 47, 579-584.	1.2	39
12	Allosteric Activation of Cytochrome P450 3A4 via Progesterone Bioconjugation. Bioconjugate Chemistry, 2017, 28, 885-889.	1.8	38
13	Mechanoenzymatic Transformations in the Absence of Bulk Water: A More Natural Way of Using Enzymes. ChemBioChem, 2020, 21, 742-758.	1.3	38
14	Global ITC fitting methods in studies of protein allostery. Methods, 2015, 76, 149-161.	1.9	36
15	Efficient Enzymatic Hydrolysis of Biomass Hemicellulose in the Absence of Bulk Water. Molecules, 2019, 24, 4206.	1.7	35
16	Solventâ€Free Enzyme Activity: Quick, Highâ€Yielding Mechanoenzymatic Hydrolysis of Cellulose into Glucose. Angewandte Chemie, 2018, 130, 2651-2654.	1.6	34
17	Synthesis and use of sulfonamide-, sulfoxide-, or sulfone-containing aminoglycoside–CoA bisubstrates as mechanistic probes for aminoglycoside N-6′-acetyltransferase. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 5518-5522.	1.0	32
18	Inhibition of Aminoglycosideâ€Deactivating Enzymes APH(3′)â€Illa and AAC(6′)â€Ii by Amphiphilic Paromo O2′′â€Ether Analogues. ChemMedChem, 2011, 6, 1961-1966.	mycin 1.6	32

#	Article	IF	CITATIONS
19	Synthesis of a Phosphonateâ€Linked Aminoglycoside–Coenzymeâ€A Bisubstrate and Use in Mechanistic Studies of an Enzyme Involved in Aminoglycoside Resistance. Chemistry - A European Journal, 2009, 15, 2064-2070.	1.7	31
20	Triazole Substitution of a Labile Amide Bond Stabilizes Pantothenamides and Improves Their Antiplasmodial Potency. Antimicrobial Agents and Chemotherapy, 2016, 60, 7146-7152.	1.4	30
21	Towards Controlling the Reactivity of Enzymes in Mechanochemistry: Inert Surfaces Protect βâ€Glucosidase Activity During Ball Milling. ChemSusChem, 2020, 13, 106-110.	3.6	29
22	Controlling substrate specificity and product regio- and stereo-selectivities of P450 enzymes without mutagenesis. Bioorganic and Medicinal Chemistry, 2014, 22, 5547-5554.	1.4	24
23	Mutations in the pantothenate kinase of Plasmodium falciparum confer diverse sensitivity profiles to antiplasmodial pantothenate analogues. PLoS Pathogens, 2018, 14, e1006918.	2.1	24
24	Inhibitors of Aminoglycoside Resistance Activated in Cells. ACS Chemical Biology, 2012, 7, 470-475.	1.6	23
25	Substrate-dependent switching of the allosteric binding mechanism of a dimeric enzyme. Nature Chemical Biology, 2014, 10, 937-942.	3.9	23
26	3-Oxo-hexahydro-1 <i>H</i> -isoindole-4-carboxylic Acid as a Drug Chiral Bicyclic Scaffold: Structure-Based Design and Preparation of Conformationally Constrained Covalent and Noncovalent Prolyl Oligopeptidase Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 4221-4234.	2.9	21
27	Rapid mechanoenzymatic saccharification of lignocellulosic biomass without bulk water or chemical pre-treatment. Green Chemistry, 2020, 22, 3877-3884.	4.6	21
28	Geminal dialkyl derivatives of N-substituted pantothenamides: Synthesis and antibacterial activity. Bioorganic and Medicinal Chemistry, 2011, 19, 2696-2706.	1.4	20
29	Site-Specific Fluorescent Labeling and Oriented Immobilization of a Triple Mutant of CYP3A4 via C64. Bioconjugate Chemistry, 2012, 23, 826-836.	1.8	17
30	Stereochemical modification of geminal dialkyl substituents on pantothenamides alters antimicrobial activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 3274-3277.	1.0	17
31	Small Molecule Restores Itaconate Sensitivity in <i>Salmonella enterica</i> : A Potential New Approach to Treating Bacterial Infections. ChemBioChem, 2016, 17, 1513-1517.	1.3	17
32	The use of aminoglycoside derivatives to study the mechanism of aminoglycoside $6\hat{a}\in^2$ -N-acetyltransferase and the role of $6\hat{a}\in^2$ -NH2 in antibacterial activity. Bioorganic and Medicinal Chemistry, 2007, 15, 2944-2951.	1.4	15
33	Regioselective Epoxidations by Cytochrome P450 3A4 Using a Theobromine Chemical Auxiliary to Predictably Produce Nâ€Protected β―or γâ€Amino Epoxides. Advanced Synthesis and Catalysis, 2017, 359, 3983-3989.	2.1	15
34	Use of bioconjugation with cytochrome P450 enzymes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 32-51.	1.1	15
35	Mechanoenzymatic Reactions Involving Polymeric Substrates or Products. ChemSusChem, 2022, 15, .	3.6	15
36	Exploring structural motifs necessary for substrate binding in the active site of Escherichia coli pantothenate kinase. Bioorganic and Medicinal Chemistry, 2014, 22, 3083-3090.	1.4	14

#	Article	IF	CITATIONS
37	Dual use of a chemical auxiliary: molecularly imprinted polymers for the selective recovery of products from biocatalytic reaction mixtures. Green Chemistry, 2012, 14, 2206.	4.6	13
38	A cross-metathesis approach to novel pantothenamide derivatives. Beilstein Journal of Organic Chemistry, 2016, 12, 963-968.	1.3	13
39	Active Site Crowding of Cytochrome P450 3A4 as a Strategy To Alter Its Selectivity. ChemBioChem, 2017, 18, 248-252.	1.3	13
40	A Covalently Attached Progesterone Molecule Outcompetes the Binding of Free Progesterone at an Allosteric Site of Cytochrome P450 3A4. Bioconjugate Chemistry, 2019, 30, 1629-1635.	1.8	13
41	Type II Ligands as Chemical Auxiliaries To Favor Enzymatic Transformations by P450 2E1. ChemBioChem, 2012, 13, 2527-2536.	1.3	12
42	Structure–Activity Relationships of Antiplasmodial Pantothenamide Analogues Reveal a New Way by Which Triazoles Mimic Amide Bonds. ChemMedChem, 2018, 13, 2677-2683.	1.6	12
43	Effect of pH on the antimicrobial activity of the macrophage metabolite itaconate. Microbiology (United Kingdom), 2021, 167 , .	0.7	12
44	Highly Efficient P(III)-to-P(V) Oxidative Rearrangement. Phosphorus, Sulfur and Silicon and the Related Elements, 2006, 181, 159-165.	0.8	11
45	An Overview of Molecular Spectroscopic Studies on Theobromine and Related Alkaloids. Applied Spectroscopy Reviews, 2012, 47, 163-179.	3.4	10
46	Metabolic Instability of Cyanothiazolidineâ€Based Prolyl Oligopeptidase Inhibitors: a Structural Assignment Challenge and Potential Medicinal Chemistry Implications. ChemMedChem, 2015, 10, 1174-1183.	1.6	9
47	Inhibition and Activation of Kinases by Reaction Products: A Reporter-Free Assay. Analytical Chemistry, 2019, 91, 11803-11811.	3.2	9
48	Steroid bioconjugation to a CYP3A4 allosteric site and its effect on substrate binding and coupling efficiency. Archives of Biochemistry and Biophysics, 2018, 653, 90-96.	1.4	8
49	Exploring Heteroaromatic Rings as a Replacement for the Labile Amide of Antiplasmodial Pantothenamides. Journal of Medicinal Chemistry, 2021, 64, 4478-4497.	2.9	8
50	Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase. Organic and Biomolecular Chemistry, 2011, 9, 1538.	1.5	7
51	Use of Chemical Auxiliaries to Control P450 Enzymes for Predictable Oxidations at Unactivated C-H Bonds of Substrates. Advances in Experimental Medicine and Biology, 2015, 851, 209-228.	0.8	7
52	Probing the ligand preferences of the three types of bacterial pantothenate kinase. Bioorganic and Medicinal Chemistry, 2018, 26, 5896-5902.	1.4	6
53	Cellular Studies of an Aminoglycoside Potentiator Reveal a New Inhibitor of Aminoglycoside Resistance. ChemBioChem, 2018, 19, 2107-2113.	1.3	6
54	The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Archives of Biochemistry and Biophysics, 2019, 672, 108069.	1.4	6

#	Article	IF	CITATIONS
55	Structural Dynamics of Cytochrome P450 3A4 in the Presence of Substrates and Cytochrome P450 Reductase. Biochemistry, 2021, 60, 2259-2271.	1.2	6
56	Itaconate: an antimicrobial metabolite of macrophages. Canadian Journal of Chemistry, 2022, 100, 104-113.	0.6	3
57	Ammonium Chlorideâ€Promoted Rapid Synthesis of Monosubstituted Ureas under Microwave Irradiation. European Journal of Organic Chemistry, 2021, 2021, 5135.	1.2	3
58	Combining Small-Molecule Bioconjugation and Hydrogen–Deuterium Exchange Mass Spectrometry (HDX-MS) to Expose Allostery: the Case of Human Cytochrome P450 3A4. ACS Chemical Biology, 2021, 16, 882-890.	1.6	2
59	Enzymes Beat Chemists in the Formation of an Unnatural Bond. ChemBioChem, 2017, 18, 432-434.	1.3	1
60	Inside Cover: Inhibition of Aminoglycoside-Deactivating Enzymes APH($3\hat{a}\in^2$)-Illa and AAC($6\hat{a}\in^2$)-li by Amphiphilic Paromomycin O2 $\hat{a}\in^2\hat{a}\in^2$ -Ether Analogues (ChemMedChem 11/2011). ChemMedChem, 2011, 6, 1942-1942.	1.6	0