Noelia Tena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7628255/publications.pdf

Version: 2024-02-01

38	1,262	17 h-index	34
papers	citations		g-index
38	38	38	1528
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Up-To-Date Analysis of the Extraction Methods for Anthocyanins: Principles of the Techniques, Optimization, Technical Progress, and Industrial Application. Antioxidants, 2022, 11, 286.	5.1	36
2	An International Survey on Olive Oils Quality and Traceability: Opinions from the Involved Actors. Foods, 2022, 11, 1045.	4.3	2
3	Antioxidant Capacity of Anthocyanins and Other Vegetal Pigments: Modern Assisted Extraction Methods and Analysis. Antioxidants, 2022, 11, 1256.	5.1	1
4	Current state of diagnostic, screening and surveillance testing methods for COVID-19 from an analytical chemistry point of view. Microchemical Journal, 2021, 167, 106305.	4.5	37
5	Antioxidant Capacity of Anthocyanins and other Vegetal Pigments. Antioxidants, 2020, 9, 665.	5.1	4
6	Monitoring Virgin Olive Oil Shelf-Life by Fluorescence Spectroscopy and Sensory Characteristics: A Multidimensional Study Carried Out under Simulated Market Conditions. Foods, 2020, 9, 1846.	4.3	20
7	State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants, 2020, 9, 451.	5.1	230
8	Tracking Sensory Characteristics of Virgin Olive Oils During Storage: Interpretation of Their Changes from a Multiparametric Perspective. Molecules, 2020, 25, 1686.	3.8	23
9	Storage and Preservation of Fats and Oils. , 2019, , 605-618.		13
10	Assessment of Vibrational Spectroscopy Performance in Geographical Identification of Virgin Olive Oils: A World Level Study. European Journal of Lipid Science and Technology, 2019, 121, 1900035.	1.5	8
11	Real time monitoring of the combined effect of chlorophyll content and light filtering packaging on virgin olive oil photo-stability using mesh cell-FTIR spectroscopy. Food Chemistry, 2019, 295, 94-100.	8.2	17
12	Characterization of different ozonized sunflower oils I. Chemical changes during ozonization. Grasas Y Aceites, 2019, 70, 329.	0.9	7
13	Photooxidation Effect in Liquid Lipid Matrices: Answers from an Innovative FTIR Spectroscopy Strategy with "Mesh Cell―Incubation. Journal of Agricultural and Food Chemistry, 2018, 66, 3541-3549.	5. 2	9
14	Virgin olive oil stability study by mesh cell-FTIR spectroscopy. Talanta, 2017, 167, 453-461.	5 . 5	35
15	Predicting extra virgin olive oil freshness during storage by fluorescence spectroscopy. Grasas Y Aceites, 2017, 68, 219.	0.9	10
16	A study of the differences between trade standards inside and outside Europe. Grasas Y Aceites, 2017, 68, 210.	0.9	12
17	Phenolic profile of virgin olive oils with and without sensory defects: Oils with non-oxidative defects exhibit a considerable concentration of phenols. European Journal of Lipid Science and Technology, 2016, 118, 299-307.	1.5	18
18	A neuroimaging study of pleasant and unpleasant olfactory perceptions of virgin olive oil. Grasas Y Aceites, 2016, 67, 157.	0.9	1

#	Article	IF	Citations
19	Identification of botanical and geographical origin of distillers dried grains with solubles by near infrared microscopy. Food Control, 2015, 54, 103-110.	5.5	12
20	In-Depth Assessment of Analytical Methods for Olive Oil Purity, Safety, and Quality Characterization. Journal of Agricultural and Food Chemistry, 2015, 63, 4509-4526.	5.2	53
21	Origin authentication of distillers' dried grains and solubles (DDGS)—application and comparison of different analytical strategies. Analytical and Bioanalytical Chemistry, 2015, 407, 6447-6461.	3.7	3
22	Use of polar and nonpolar fractions as additional information sources for studying thermoxidized virgin olive oils by FTIR. Grasas Y Aceites, 2014, 65, e030.	0.9	8
23	Sensor responses to fat food aroma: A comprehensive study of dry-cured ham typicality. Talanta, 2014, 120, 342-348.	5.5	14
24	Differentiation of meat and bone meal from fishmeal by near-infrared spectroscopy: Extension of scope to defatted samples. Food Control, 2014, 43, 155-162.	5.5	17
25	Authenticity of olive oil: Mapping and comparing official methods and promising alternatives. Food Research International, 2013, 54, 2025-2038.	6.2	110
26	Time Course Analysis of Fractionated Thermoxidized Virgin Olive Oil by FTIR Spectroscopy. Journal of Agricultural and Food Chemistry, 2013, 61, 3212-3218.	5.2	14
27	Infrared, Raman, and Fluorescence Spectroscopies: Methodologies and Applications., 2013,, 335-393.		7
28	Describing the chemical singularity of the Spanish protected designations of origin for virgin olive oils in relation to oils from neighbouring areas. Grasas Y Aceites, 2012, 63, 26-34.	0.9	15
29	Chemical changes of thermoxidized virgin olive oil determined by excitation–emission fluorescence spectroscopy (EEFS). Food Research International, 2012, 45, 103-108.	6.2	44
30	Authentication of organic and conventional eggs by carotenoid profiling. Food Chemistry, 2011, 126, 1299-1305.	8.2	56
31	Quality Characterization of the New Virgin Olive Oil Var. Sikitita by Phenols and Volatile Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 8357-8364.	5.2	59
32	Thermal Deterioration of Virgin Olive Oil Monitored by ATR-FTIR Analysis of Trans Content. Journal of Agricultural and Food Chemistry, 2009, 57, 9997-10003.	5.2	36
33	Evaluation of Virgin Olive Oil Thermal Deterioration by Fluorescence Spectroscopy. Journal of Agricultural and Food Chemistry, 2009, 57, 10505-10511.	5.2	80
34	Contributing to interpret sensory attributes qualifying Iberian hams from the volatile profile. Grasas Y Aceites, 2009, 60, 277-283.	0.9	7
35	Relationship between sensory attributes and volatile compounds qualifying dry-cured hams. Meat Science, 2008, 80, 315-325.	5.5	136
36	Volatile Compounds Characterizing Tunisian Chemlali and Chétoui Virgin Olive Oils. Journal of Agricultural and Food Chemistry, 2007, 55, 7852-7858.	5.2	70

Noelia Tena

#	Article	IF	CITATIONS
37	Characterization of olive paste volatiles to predict the sensory quality of virgin olive oil. European Journal of Lipid Science and Technology, 2007, 109, 663-672.	1.5	38
38	Evaluation of the methods based on triglycerides and sterols for the detection of hazelnut oil in olive oil. Grasas Y Aceites, 2007, 58, .	0.9	0