Mu-Sen Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7628067/publications.pdf

Version: 2024-02-01

567281 477307 42 838 15 29 citations h-index g-index papers 42 42 42 1269 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Brittleness and fracture mechanism of sintered Dy-doped NdFeB magnets. Rare Metals, 2022, 41, 2688-2692.	7.1	5
2	Corrosion prevention of sintered Nd–Fe–B magnet by a phosphate chemical conversion treatment. Rare Metals, 2021, 40, 185-189.	7.1	2
3	Supercapacitive performance of TiO ₂ boosted by a unique porous TiO ₂ /Ti network and activated Ti ³⁺ . RSC Advances, 2019, 9, 7811-7817.	3.6	21
4	Surface Plasmon Resonance based sensing of lysozyme in serum on Micrococcus lysodeikticus-modified graphene oxide surfaces. Biosensors and Bioelectronics, 2017, 89, 525-531.	10.1	58
5	Electrophoretic Approach for the Simultaneous Deposition and Functionalization of Reduced Graphene Oxide Nanosheets with Diazonium Compounds: Application for Lysozyme Sensing in Serum. ACS Applied Materials & Diterfaces, 2017, 9, 12823-12831.	8.0	31
6	Flexible Nanoholey Patches for Antibiotic-Free Treatments of Skin Infections. ACS Applied Materials & Skin Infections.	8.0	42
7	Microstructure and properties of low-temperature aged Dy-doped Nd-Fe-B magnet. Journal of Central South University, 2016, 23, 2763-2770.	3.0	1
8	Effect of optimal aging treatment on magnetic performance and mechanical properties of sintered Nd-Fe-B permanent magnets. Journal of Central South University, 2016, 23, 515-522.	3.0	8
9	Light-Triggered Release of Biomolecules from Diamond Nanowire Electrodes. Langmuir, 2016, 32, 6515-6523.	3.5	9
10	Vertically Aligned Nitrogen-Doped Carbon Nanotube Carpet Electrodes: Highly Sensitive Interfaces for the Analysis of Serum from Patients with Inflammatory Bowel Disease. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9600-9609.	8.0	16
11	Detection of folic acid protein in human serum using reduced graphene oxide electrodes modified by folic-acid. Biosensors and Bioelectronics, 2016, 75, 389-395.	10.1	54
12	Construction of a bone-like surface layer on hydroxyl-modified carbon/carbon composite implants via biomimetic mineralization and in vivo tests. RSC Advances, 2016, 6, 9370-9378.	3.6	7
13	Preparation of reduced graphene oxide–Ni(OH) ₂ composites by electrophoretic deposition: application for non-enzymatic glucose sensing. Journal of Materials Chemistry A, 2014, 2, 5525-5533.	10.3	128
14	Environmentally Friendly Reduction of Graphene Oxide Using Tyrosine for Nonenzymatic Amperometric H ₂ O ₂ Detection. Electroanalysis, 2014, 26, 156-163.	2.9	30
15	Clicking ferrocene to halogenated boron-doped diamond surfaces. Rare Metals, 2013, 32, 100-104.	7.1	1
16	Defects of diamond single crystal grown under high temperature and high pressure. Thin Solid Films, 2013, 546, 457-460.	1.8	2
17	Preparation of H-terminated and aminated diamond like carbon surfaces. Rare Metals, 2012, 31, 189-192.	7.1	5
18	Characterization and analysis of DLC films with different thickness deposited by RF magnetron PECVD. Rare Metals, 2012, 31, 198-203.	7.1	13

#	Article	IF	CITATIONS
19	Plasmaâ€sprayed hydroxyapatite coating on carbon/carbon composite scaffolds for bone tissue engineering and related tests ⟨i⟩in vivo⟨/i⟩. Journal of Biomedical Materials Research - Part A, 2010, 92A, 1019-1027.	4.0	14
20	Distinction between surface hydroxyl and ether groups on boron-doped diamond electrodes using a chemical approach. Electrochemistry Communications, 2010, 12, 351-354.	4.7	48
21	Characterization and biological behavior of a carbon fiber/carbon composite scaffold with a porous surface for bone tissue reconstruction. New Carbon Materials, 2010, 25, 232-236.	6.1	13
22	Fracture behavior of HPHT synthetic diamond with micrometers metallic inclusions. Frontiers of Materials Science in China, 2009, 3, 218-223.	0.5	1
23	Characterization and tribological application of diamond-like carbon (DLC) films prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique. Frontiers of Materials Science in China, 2009, 3, 409-414.	0.5	3
24	"Clicking―Thiophene on Diamond Interfaces. Preparation of a Conducting Polythiophene/Diamond Hybrid Material. Journal of Physical Chemistry C, 2009, 113, 17082-17086.	3.1	27
25	Analysis of the carbon source for diamond crystal growth. Science Bulletin, 2008, 53, 937-942.	9.0	7
26	Biological behavior of hydroxyapatite coatings on carbon/carbon composites produced by plasma spraying. New Carbon Materials, 2008, 23, 144-148.	6.1	12
27	Wet-chemical approach for the halogenation of hydrogenated boron-doped diamond electrodes. Chemical Communications, 2008, , 6294.	4.1	10
28	EFFECT OF STAND-OFF DISTANCE ON STRUCTURE AND MECHANICAL PROPERTIES OF HYDROXYAPATITE COATINGS PLASMA-SPRAYED ONTO CARBON/CARBON COMPOSITES. Surface Review and Letters, 2007, 14, 371-376.	1.1	3
29	Biomedical Coatings Prepared on Carbon/Carbon Composites. Science and Engineering of Composite Materials, 2007, 14, 241-249.	1.4	2
30	Synthesis and microstructure of hydroxyapatite nanofibers synthesized at $37\hat{A}^{\circ}\text{C}$. Materials Chemistry and Physics, 2006, 95, 145-149.	4.0	45
31	THE EXPERIMENT OF PLASMA-SPRAYED HA COATINGS ON CARBON/CARBON COMPOSITES IN BONE. Surface Review and Letters, 2006, 13, 423-428.	1.1	8
32	An investigation of a thin metal film covering on HPHT as-grown diamond from Fe–Ni–C system. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 396, 352-359.	5.6	15
33	The effect of plasma spraying power on the structure and mechanical properties of hydroxyapatite deposited onto carbon/carbon composites. Surface and Coatings Technology, 2005, 190, 287-292.	4.8	49
34	Synthesis of InN/InP core/sheath nanowires. Applied Physics Letters, 2004, 84, 1546-1548.	3.3	20
35	Indium-assisted synthesis on GaN nanotubes. Applied Physics Letters, 2004, 84, 3912-3914.	3.3	55
36	Plasma-sprayed hydroxyapatite coatings on carbon/carbon composites. Surface and Coatings Technology, 2004, 176, 188-192.	4.8	50

#	Article	IF	CITATIONS
37	The Investigation on Preparation & Physicochemical Process of Nanosized Hydroxyapatite Powder. Materials Research Society Symposia Proceedings, 2002, 724, N7.15.1.	0.1	2
38	Analysis of nanometer inclusions in high pressure synthesized diamond single crystals. Chemical Physics Letters, 2002, 355, 490-496.	2.6	5
39	Transmission electron microscopic study of some inclusions in synthetic diamond crystals. Materials Letters, 2001, 48, 21-25.	2.6	7
40	Structural imperfections in HPHT-grown diamond crystals (Ceramics & Rocks 2). Proceedings of the Asian Pacific Conference on Fracture and Strength and International Conference on Advanced Technology in Experimental Mechanics, 2001, 1.01.203, 535-539.	0.0	1
41	Electron microscopy of high-temperature and high-pressure as-grown diamond crystals. Journal of Materials Research, 2001, 16, 3023-3026.	2.6	2
42	Some inclusions and defects in a synthetic diamond single crystal. Journal of Crystal Growth, 2000, 218, 455-458.	1.5	6