Zhi-Jun Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627911/publications.pdf

Version: 2024-02-01

		41344	32842
160	11,075	49	100
papers	citations	h-index	g-index
160	160	160	10120
160	160	160	18129
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Overexpression of LAG3, TIM3, and A2aR in adenoid cystic carcinoma and mucoepidermoid carcinoma. Oral Diseases, 2023, 29, 175-187.	3.0	2
2	Overexpression of CD168 is related to poor prognosis in oral squamous cell carcinoma. Oral Diseases, 2022, 28, 364-372.	3.0	7
3	Bioresponsive immune-booster-based prodrug nanogel for cancer immunotherapy. Acta Pharmaceutica Sinica B, 2022, 12, 451-466.	12.0	66
4	Applying nanotechnology to boost cancer immunotherapy by promoting immunogenic cell death. Chinese Chemical Letters, 2022, 33, 1718-1728.	9.0	42
5	Biomaterial-mediated modulation of oral microbiota synergizes with PD-1 blockade in mice with oral squamous cell carcinoma. Nature Biomedical Engineering, 2022, 6, 32-43.	22.5	57
6	Engineered nanogels simultaneously implement HDAC inhibition and chemotherapy to boost antitumor immunity via pyroptosis. Applied Materials Today, 2022, 26, 101363.	4. 3	9
7	Ferroceneâ€Containing Nucleic Acidâ€Based Energyâ€Storage Nanoagent for Continuously Photoâ€Induced Oxidative Stress Amplification. Angewandte Chemie, 2022, 134, .	2.0	3
8	Ferroceneâ€Containing Nucleic Acidâ€Based Energyâ€Storage Nanoagent for Continuously Photoâ€Induced Oxidative Stress Amplification. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
9	Electron transfer-triggered imaging of EGFR signaling activity. Nature Communications, 2022, 13, 594.	12.8	13
10	Engineering Multienzymeâ€Mimicking Covalent Organic Frameworks as Pyroptosis Inducers for Boosting Antitumor Immunity. Advanced Materials, 2022, 34, e2108174.	21.0	91
11	Engineering prodrug nanomicelles as pyroptosis inducer for codelivery of PI3K/mTOR and CDK inhibitors to enhance antitumor immunity. Acta Pharmaceutica Sinica B, 2022, 12, 3139-3155.	12.0	13
12	Evoking pyroptosis with nanomaterials for cancer immunotherapy: Current boom and novel outlook. , 2022, 1, 9130001.		8
13	Expression of HHLA2, TMIGD2, and GITR in salivary gland adenoid cystic carcinoma and mucoepidermoid carcinoma. Journal of Oral Pathology and Medicine, 2022, 51, 379-387.	2.7	2
14	Predicting the Proliferation of Tongue Cancer With Artificial Intelligence in Contrast-Enhanced CT. Frontiers in Oncology, 2022, 12, 841262.	2.8	2
15	Inspired heat shock protein alleviating prodrug enforces immunogenic photodynamic therapy by eliciting pyroptosis. Nano Research, 2022, 15, 3398-3408.	10.4	17
16	Staggered Stacking Covalent Organic Frameworks for Boosting Cancer Immunotherapy. Advanced Functional Materials, 2022, 32, .	14.9	37
17	Bioengineered nanogels for cancer immunotherapy. Chemical Society Reviews, 2022, 51, 5136-5174.	38.1	81
18	Overexpression of RRM2 is related to poor prognosis in oral squamous cell carcinoma. Oral Diseases, 2021, 27, 204-214.	3.0	19

#	Article	IF	Citations
19	Non-depleting reformation of immunosuppressive myeloid cells to broaden the application of anti-PD therapy. Nanoscale, 2021, 13, 4420-4431.	5.6	13
20	Targeting myeloid-derived suppressor cells for cancer therapy. Cancer Biology and Medicine, 2021, 18, 0-0.	3.0	12
21	Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics, 2021, 11, 5365-5386.	10.0	324
22	Inspired Epigenetic Modulation Synergy with Adenosine Inhibition Elicits Pyroptosis and Potentiates Cancer Immunotherapy. Advanced Functional Materials, 2021, 31, 2100007.	14.9	39
23	An Ultraâ€Stable, Oxygenâ€Supply Nanoprobe Emitting in Nearâ€Infraredâ€II Window to Guide and Enhance Radiotherapy by Promoting Antiâ€Tumor Immunity. Advanced Healthcare Materials, 2021, 10, e2100090.	7.6	27
24	Supramolecular Tadalafil Nanovaccine for Cancer Immunotherapy by Alleviating Myeloidâ€Derived Suppressor Cells and Heightening Immunogenicity. Small Methods, 2021, 5, e2100115.	8.6	44
25	Improving antitumor immunity using antiangiogenic agents: Mechanistic insights, current progress, and clinical challenges. Cancer Communications, 2021, 41, 830-850.	9.2	42
26	Twoâ€Photon Absorption Induced Cancer Immunotherapy Using Covalent Organic Frameworks. Advanced Functional Materials, 2021, 31, 2103056.	14.9	45
27	CMTM4 regulates epithelial–mesenchymal transition and PD‣1 expression in head and neck squamous cell carcinoma. Molecular Carcinogenesis, 2021, 60, 556-566.	2.7	12
28	Low intensity pulsed ultrasound informationÂtechnology intervention in diagnosis andÂprediction of Muscle Atrophy. Pakistan Journal of Medical Sciences, 2021, 37, 1569-1573.	0.6	0
29	Genome-Wide Enhancer Analysis Reveals the Role of AP-1 Transcription Factor in Head and Neck Squamous Cell Carcinoma. Frontiers in Molecular Biosciences, 2021, 8, 701531.	3.5	4
30	Calcium Phosphateâ€Reinforced Metalâ€Organic Frameworks Regulate Adenosineâ€Mediated Immunosuppression. Advanced Materials, 2021, 33, e2102271.	21.0	27
31	Three-Dimensional Covalent Organic Frameworks with Cross-Linked Pores for Efficient Cancer Immunotherapy. Nano Letters, 2021, 21, 7979-7988.	9.1	38
32	TIGIT/CD155 blockade enhances anti-PD-L1 therapy in head and neck squamous cell carcinoma by targeting myeloid-derived suppressor cells. Oral Oncology, 2021, 121, 105472.	1.5	30
33	Covalent organic frameworks for optical applications. Aggregate, 2021, 2, e24.	9.9	41
34	Gas and gas-generating nanoplatforms in cancer therapy. Journal of Materials Chemistry B, 2021, 9, 8541-8557.	5.8	22
35	Twoâ€Photon Absorption Induced Cancer Immunotherapy Using Covalent Organic Frameworks (Adv.) Tj ETQq1	1 0.78431 14.9	4 rgBT /Over
36	Microenvironmentâ€Responsive Prodrugâ€Induced Pyroptosis Boosts Cancer Immunotherapy. Advanced Science, 2021, 8, e2101840.	11.2	160

#	Article	IF	Citations
37	Gelatinase-sensitive nanoparticles loaded with photosensitizer and STAT3 inhibitor for cancer photothermal therapy and immunotherapy. Journal of Nanobiotechnology, 2021, 19, 379.	9.1	20
38	Improved Diagnostic Accuracy of Ameloblastoma and Odontogenic Keratocyst on Cone-Beam CT by Artificial Intelligence. Frontiers in Oncology, 2021, 11, 793417.	2.8	11
39	Theranostic near-infrared-IIb emitting nanoprobes for promoting immunogenic radiotherapy and abscopal effects against cancer metastasis. Nature Communications, 2021, 12, 7149.	12.8	63
40	Methods for monitoring cancer cell pyroptosis. Cancer Biology and Medicine, 2021, 19, 398-414.	3.0	18
41	Expression and clinicopathologic significance of coxsackie–adenovirus receptor in oral squamous cell carcinoma. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 2020, 129, 141-148.	0.4	0
42	Targeting CMTM6 Suppresses Stem Cell–Like Properties and Enhances Antitumor Immunity in Head and Neck Squamous Cell Carcinoma. Cancer Immunology Research, 2020, 8, 179-191.	3.4	91
43	Overexpression of ATAD2 indicates Poor Prognosis in Oral Squamous Cell Carcinoma. International Journal of Medical Sciences, 2020, 17, 1598-1609.	2.5	9
44	Increased Expression of SHMT2 Is Associated With Poor Prognosis and Advanced Pathological Grade in Oral Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 588530.	2.8	14
45	Overexpression of PREX1 in oral squamous cell carcinoma indicates poor prognosis. Journal of Molecular Histology, 2020, 51, 531-540.	2.2	3
46	Long Non-coding RNA LINC02195 as a Regulator of MHC I Molecules and Favorable Prognostic Marker for Head and Neck Squamous Cell Carcinoma. Frontiers in Oncology, 2020, 10, 615.	2.8	31
47	Expression levels of SIX1, ME2, and AP2M1 in adenoid cystic carcinoma and mucoepidermoid carcinoma. Oral Diseases, 2020, 26, 1687-1695.	3.0	9
48	Expression of inositol polyphosphate 4â€phosphatase type II and the prognosis of oral squamous cell carcinoma. European Journal of Oral Sciences, 2020, 128, 37-45.	1.5	1
49	Expression and Prognostic Value of IFIT1 and IFITM3 in Head and Neck Squamous Cell Carcinoma. American Journal of Clinical Pathology, 2020, 153, 618-629.	0.7	15
50	Near-Infrared IIb Emitting Nanoprobe for High-Resolution Real-Time Imaging-Guided Photothermal Therapy Triggering Enhanced Anti-tumor Immunity. ACS Applied Bio Materials, 2020, 3, 1636-1645.	4.6	18
51	An RGB-emitting molecular cocktail for the detection of bacterial fingerprints. Chemical Science, 2020, 11, 4403-4409.	7.4	24
52	Prodrugâ€Based Versatile Nanomedicine for Enhancing Cancer Immunotherapy by Increasing Immunogenic Cell Death. Small, 2020, 16, e2000214.	10.0	73
53	Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. International Journal of Medical Sciences, 2020, 17, 799-806.	2.5	2
54	Hybrid cellular membrane nanovesicles amplify macrophage immune responses against cancer recurrence and metastasis. Nature Communications, 2020, 11, 4909.	12.8	199

#	Article	IF	CITATIONS
55	Blockade of TIGIT/CD155 Signaling Reverses T-cell Exhaustion and Enhances Antitumor Capability in Head and Neck Squamous Cell Carcinoma. Cancer Immunology Research, 2019, 7, 1700-1713.	3.4	126
56	Increased Expression of LAMTOR5 Predicts Poor Prognosis and Is Associated with Lymph Node Metastasis of Head and Neck Squamous Cell Carcinoma. International Journal of Medical Sciences, 2019, 16, 783-792.	2.5	10
57	Size-Tunable Assemblies Based on Ferrocene-Containing DNA Polymers for Spatially Uniform Penetration. CheM, 2019, 5, 1775-1792.	11.7	78
58	Molecular Targeting Nanoprobes with Non-Overlap Emission in the Second Near-Infrared Window for <i>in Vivo</i> Two-Color Colocalization of Immune Cells. ACS Nano, 2019, 13, 12830-12839.	14.6	44
59	Cancer Cell Membraneâ€Coated Nanoparticles for Personalized Therapy in Patientâ€Derived Xenograft Models. Advanced Functional Materials, 2019, 29, 1905671.	14.9	125
60	pDC depletion induced by CD317 blockade drives the antitumor immune response in head and neck squamous cell carcinoma. Oral Oncology, 2019, 96, 131-139.	1.5	17
61	Long noncoding RNA MYOSLID promotes invasion and metastasis by modulating the partial epithelial-mesenchymal transition program in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 278.	8.6	80
62	The Expression Patterns and Associated Clinical Parameters of Human Endogenous Retrovirus-H Long Terminal Repeat-Associating Protein 2 and Transmembrane and Immunoglobulin Domain Containing 2 in Oral Squamous Cell Carcinoma. Disease Markers, 2019, 2019, 1-9.	1.3	17
63	Increased salivary microvesicles are associated with the prognosis of patients with oral squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2019, 23, 4054-4062.	3.6	23
64	Cancer Stem Cellâ€Platelet Hybrid Membraneâ€Coated Magnetic Nanoparticles for Enhanced Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Advanced Functional Materials, 2019, 29, 1807733.	14.9	137
65	Cancer Cell Membrane Camouflaged Nanoparticles to Realize Starvation Therapy Together with Checkpoint Blockades for Enhancing Cancer Therapy. ACS Nano, 2019, 13, 2849-2857.	14.6	253
66	Overexpression of FAM3C is associated with poor prognosis in oral squamous cell carcinoma. Pathology Research and Practice, 2019, 215, 772-778.	2.3	11
67	LAIR†overexpression and correlation with advanced pathological grade and immune suppressive status in oral squamous cell carcinoma. Head and Neck, 2019, 41, 1080-1086.	2.0	21
68	Complement deposition on renal histopathology of patients with diabetic nephropathy. Diabetes and Metabolism, 2019, 45, 363-368.	2.9	30
69	High expression of GPNMB predicts poor prognosis in head and neck squamous cell carcinoma. Histology and Histopathology, 2019, 34, 803-810.	0.7	7
70	<scp>TRAF</scp> 6 regulates tumour metastasis through <scp>EMT</scp> and <scp>CSC</scp> phenotypes in head and neck squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2018, 22, 1337-1349.	3.6	44
71	Anti-CD47 treatment enhances anti-tumor T-cell immunity and improves immunosuppressive environment in head and neck squamous cell carcinoma. Oncolmmunology, 2018, 7, e1397248.	4.6	45
72	Engineered red blood cells for capturing circulating tumor cells with high performance. Nanoscale, 2018, 10, 6014-6023.	5.6	44

#	Article	IF	CITATIONS
73	Coâ€inhibitory immune checkpoints in head and neck squamous cell carcinoma. Oral Diseases, 2018, 24, 120-123.	3.0	13
74	CD317 Signature in Head and Neck Cancer Indicates Poor Prognosis. Journal of Dental Research, 2018, 97, 787-794.	5.2	14
75	Specific blockade <scp>CD</scp> 73 alters the "exhausted―phenotype of <scp>T</scp> cells in head and neck squamous cell carcinoma. International Journal of Cancer, 2018, 143, 1494-1504.	5.1	31
76	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie, 2018, 130, 998-1003.	2.0	18
77	Overexpression of p21-activated kinase 2 is correlated with high-grade oral squamous cell carcinomas. Future Oncology, 2018, 14, 1091-1100.	2.4	2
78	$\hat{I}^3\hat{a}$ €Secretase inhibitor reduces immunosuppressive cells and enhances tumour immunity in head and neck squamous cell carcinoma. International Journal of Cancer, 2018, 142, 999-1009.	5.1	59
79	Plateletâ€Facilitated Photothermal Therapy of Head and Neck Squamous Cell Carcinoma. Angewandte Chemie - International Edition, 2018, 57, 986-991.	13.8	132
80	Blockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinoma. Cellular and Molecular Life Sciences, 2018, 75, 2045-2058.	5.4	103
81	Inhibition of JAK2/STAT3 reduces tumorâ€induced angiogenesis and myeloidâ€derived suppressor cells in head and neck cancer. Molecular Carcinogenesis, 2018, 57, 429-439.	2.7	59
82	Cancer Theranostics: Myeloid-Derived Suppressor Cell Membrane-Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death (Adv. Funct. Mater. 37/2018). Advanced Functional Materials, 2018, 28, 1870265.	14.9	4
83	Overexpression of Golgi Phosphoprotein 2 Is Associated With Poor Prognosis in Oral Squamous Cell Carcinoma. American Journal of Clinical Pathology, 2018, 150, 74-83.	0.7	10
84	Inhibition of SRC family kinases facilitates anti-CTLA4 immunotherapy in head and neck squamous cell carcinoma. Cellular and Molecular Life Sciences, 2018, 75, 4223-4234.	5.4	37
85	Myeloidâ€Derived Suppressor Cell Membraneâ€Coated Magnetic Nanoparticles for Cancer Theranostics by Inducing Macrophage Polarization and Synergizing Immunogenic Cell Death. Advanced Functional Materials, 2018, 28, 1801389.	14.9	140
86	Blockade of TIM3 relieves immunosuppression through reducing regulatory T cells in head and neck cancer. Journal of Experimental and Clinical Cancer Research, 2018, 37, 44.	8.6	87
87	Expression and phosphorylation of Stathmin 1 indicate poor survival in head and neck squamous cell carcinoma and associate with immune suppression. Biomarkers in Medicine, 2018, 12, 759-769.	1.4	14
88	Over-expression of IQGAP1 indicates poor prognosis in head and neck squamous cell carcinoma. Journal of Molecular Histology, 2018, 49, 389-398.	2.2	19
89	Tâ€eell immunoglobulin mucin 3 blockade drives an antitumor immune response in head and neck cancer. Molecular Oncology, 2017, 11, 235-247.	4.6	65
90	Antitumor Plateletâ€Mimicking Magnetic Nanoparticles. Advanced Functional Materials, 2017, 27, 1604774.	14.9	152

#	Article	IF	Citations
91	Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2017, 66, 627-636.	4.2	133
92	Theranostics: Antitumor Plateletâ€Mimicking Magnetic Nanoparticles (Adv. Funct. Mater. 9/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
93	Expression and associations of TRAF1, BMI-1, ALDH1, and Lin28B in oral squamous cell carcinoma. Tumor Biology, 2017, 39, 101042831769593.	1.8	7
94	Selective blockade of B7â€H3 enhances antitumour immune activity by reducing immature myeloid cells in head and neck squamous cell carcinoma. Journal of Cellular and Molecular Medicine, 2017, 21, 2199-2210.	3.6	43
95	<scp>SATB /scp>1 promotes tumor metastasis and invasiveness in oral squamous cell carcinoma. Oral Diseases, 2017, 23, 247-254.</scp>	3.0	13
96	Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma. Molecular Cancer, 2017, 16, 99.	19.2	129
97	Erythrocyte Membrane-Coated Upconversion Nanoparticles with Minimal Protein Adsorption for Enhanced Tumor Imaging. ACS Applied Materials & Samp; Interfaces, 2017, 9, 2159-2168.	8.0	195
98	Targeting phosphorylation of STAT3 delays tumor growth in HPV-negative anal squamous cell carcinoma mouse model. Scientific Reports, 2017, 7, 6629.	3.3	13
99	Inhibition of SRC family kinases reduces myeloidâ€derived suppressor cells in head and neck cancer. International Journal of Cancer, 2017, 140, 1173-1185.	5.1	30
100	NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2017, 36, 116.	8.6	89
101	AGR2 promotes the proliferation, migration and regulates epithelial-mesenchymal transition in salivary adenoid cystic carcinoma. American Journal of Translational Research (discontinued), 2017, 9, 507-519.	0.0	8
102	B7-H3 regulates migration and invasion in salivary gland adenoid cystic carcinoma via the JAK2/STAT3 signaling pathway. American Journal of Translational Research (discontinued), 2017, 9, 1369-1380.	0.0	8
103	B7-H4 expression indicates poor prognosis of oral squamous cell carcinoma. Cancer Immunology, Immunotherapy, 2016, 65, 1035-1045.	4.2	58
104	LAG-3 confers poor prognosis and its blockade reshapes antitumor response in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1239005.	4.6	108
105	NOTCH1 inhibition enhances the efficacy of conventional chemotherapeutic agents by targeting head neck cancer stem cell. Scientific Reports, 2016, 6, 24704.	3.3	76
106	Cancer Cell Membrane oated Upconversion Nanoprobes for Highly Specific Tumor Imaging. Advanced Materials, 2016, 28, 3460-3466.	21.0	420
107	Targeting STAT3 signaling reduces immunosuppressive myeloid cells in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1130206.	4.6	32
108	CTLA4 blockade reduces immature myeloid cells in head and neck squamous cell carcinoma. Oncolmmunology, 2016, 5, e1151594.	4.6	59

#	Article	IF	Citations
109	Expression of LC3, LAMP2, KEAP1 and NRF2 in Salivary Adenoid Cystic Carcinoma. Pathology and Oncology Research, 2016, 22, 109-114.	1.9	16
110	Dihydromyricetin promotes autophagy and apoptosis through ROS-STAT3 signaling in head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 59691-59703.	1.8	44
111	Hypoxia induces TFE3 expression in head and neck squamous cell carcinoma. Oncotarget, 2016, 7, 11651-11663.	1.8	14
112	PAK2 promotes migration and proliferation of salivary gland adenoid cystic carcinoma. American Journal of Translational Research (discontinued), 2016, 8, 3387-97.	0.0	8
113	Role of hypoxia-inducible factor- $\hat{\Pi}$ and CD146 in epidermal growth factor receptor-mediated angiogenesis in salivary gland adenoid cystic carcinoma. Molecular Medicine Reports, 2015, 12, 3432-3438.	2.4	12
114	Red Blood Cell Membrane as a Biomimetic Nanocoating for Prolonged Circulation Time and Reduced Accelerated Blood Clearance. Small, 2015, 11, 6225-6236.	10.0	353
115	PD-1 blockade attenuates immunosuppressive myeloid cells due to inhibition of CD47/SIRPα axis in HPV negative head and neck squamous cell carcinoma. Oncotarget, 2015, 6, 42067-42080.	1.8	95
116	Epidermal Growth Factor Receptor Inhibition Reduces Angiogenesis via Hypoxia-Inducible Factor- $1\hat{l}_{\pm}$ and Notch1 in Head Neck Squamous Cell Carcinoma. PLoS ONE, 2015, 10, e0119723.	2.5	41
117	Dual induction of apoptotic and autophagic cell death by targeting survivin in head neck squamous cell carcinoma. Cell Death and Disease, 2015, 6, e1771-e1771.	6.3	52
118	Anterior gradient protein 2 expression in high grade head and neck squamous cell carcinoma correlated with cancer stem cell and epithelial mesenchymal transition. Oncotarget, 2015, 6, 8807-8821.	1.8	54
119	STAT3 blockade enhances the efficacy of conventional chemotherapeutic agents by eradicating head neck stemloid cancer cell. Oncotarget, 2015, 6, 41944-41958.	1.8	36
120	Tumor growth suppression by inhibiting both autophagy and STAT3 signaling in HNSCC. Oncotarget, 2015, 6, 43581-43593.	1.8	28
121	Notch signaling induces epithelial-mesenchymal transition to promote invasion and metastasis in adenoid cystic carcinoma. American Journal of Translational Research (discontinued), 2015, 7, 162-74.	0.0	10
122	Inhibition of STAT3 reduces proliferation and invasion in salivary gland adenoid cystic carcinoma. American Journal of Cancer Research, 2015, 5, 1751-61.	1.4	9
123	C4.4A as a biomarker of head and neck squamous cell carcinoma and correlated with epithelial mesenchymal transition. American Journal of Cancer Research, 2015, 5, 3505-15.	1.4	9
124	Inhibition of Survivin Reduces HIF-1α, TGF-β1 and TFE3 in Salivary Adenoid Cystic Carcinoma. PLoS ONE, 2014, 9, e114051.	2.5	17
125	CD163+ Tumor-Associated Macrophages Correlated with Poor Prognosis and Cancer Stem Cells in Oral Squamous Cell Carcinoma. BioMed Research International, 2014, 2014, 1-9.	1.9	134
126	Correlation of <scp>ALDH</scp> 1, <scp>CD</scp> 44, <scp>OCT</scp> 4 and <scp>SOX</scp> 2 in tongue squamous cell carcinoma and their association with disease progression and prognosis. Journal of Oral Pathology and Medicine, 2014, 43, 492-498.	2.7	79

#	Article	IF	Citations
127	Induction of autophagy-dependent cell death by the survivin suppressant YM155 in salivary adenoid cystic carcinoma. Apoptosis: an International Journal on Programmed Cell Death, 2014, 19, 748-758.	4.9	35
128	Prognostic and predictive values of SPP1, PAI and caveolin-1 in patients with oral squamous cell carcinoma. International Journal of Clinical and Experimental Pathology, 2014, 7, 6032-9.	0.5	19
129	Inhibition of mTOR reduce Stat3 and PAI related angiogenesis in salivary gland adenoid cystic carcinoma. American Journal of Cancer Research, 2014, 4, 764-75.	1.4	12
130	Targeting of interleukin-13 receptor $\hat{l}\pm 2$ for treatment of head and neck squamous cell carcinoma induced by conditional deletion of TGF- \hat{l}^2 and PTEN signaling. Journal of Translational Medicine, 2013, 11, 45.	4.4	13
131	M2-polarised macrophages in infantile haemangiomas: correlation with promoted angiogenesis. Journal of Clinical Pathology, 2013, 66, 1058-1064.	2.0	29
132	Overexpression of macrophage migration inhibitory factor in adenoid cystic carcinoma: correlation with enhanced metastatic potential. Journal of Cancer Research and Clinical Oncology, 2013, 139, 287-295.	2.5	20
133	MicroRNA-135b acts as a tumor promoter by targeting the hypoxia-inducible factor pathway in genetically defined mouse model of head and neck squamous cell carcinoma. Cancer Letters, 2013, 331, 230-238.	7.2	73
134	Propranolol inhibits endothelial progenitor cell homing: a possible treatment mechanism of infantile hemangioma. Cardiovascular Pathology, 2013, 22, 203-210.	1.6	41
135	Hypoxia-induced autophagy in endothelial cells: a double-edged sword in the progression of infantile haemangioma?. Cardiovascular Research, 2013, 98, 437-448.	3.8	73
136	Inhibition of mTOR Reduces Anal Carcinogenesis in Transgenic Mouse Model. PLoS ONE, 2013, 8, e74888.	2.5	13
137	Clinical Significance of Keap1 and Nrf2 in Oral Squamous Cell Carcinoma. PLoS ONE, 2013, 8, e83479.	2.5	48
138	Chemopreventive and Chemotherapeutic Actions of mTOR Inhibitor in Genetically Defined Head and Neck Squamous Cell Carcinoma Mouse Model. Clinical Cancer Research, 2012, 18, 5304-5313.	7.0	106
139	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
140	Loss of TGF-Î ² signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene, 2012, 31, 3322-3332.	5.9	148
141	Association of increased ligand cyclophilin A and receptor CD147 with hypoxia, angiogenesis, metastasis and prognosis of tongue squamous cell carcinoma. Histopathology, 2012, 60, 793-803.	2.9	44
142	Autophagy regulates hypoxiaâ€induced osteoclastogenesis through the HIFâ€1α/BNIP3 signaling pathway. Journal of Cellular Physiology, 2012, 227, 639-648.	4.1	137
143	Mammalian target of rapamycin regulates isoliquiritigenin-induced autophagic and apoptotic cell death in adenoid cystic carcinoma cells. Apoptosis: an International Journal on Programmed Cell Death, 2012, 17, 90-101.	4.9	69
144	Increased expression of peroxiredoxin 6 and cyclophilin A in squamous cell carcinoma of the tongue. Oral Diseases, 2011, 17, 328-334.	3.0	26

#	Article	IF	Citations
145	Curcumin Dually Inhibits Both Mammalian Target of Rapamycin and Nuclear Factor-l [®] B Pathways through a Crossed Phosphatidylinositol 3-Kinase/Akt/ll [®] B Kinase Complex Signaling Axis in Adenoid Cystic Carcinoma. Molecular Pharmacology, 2011, 79, 106-118.	2.3	50
146	Activation of PI3K/Akt/IKK-α/NF-κB signaling pathway is required for the apoptosis-evasion in human salivary adenoid cystic carcinoma: its inhibition by quercetin. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 850-863.	4.9	131
147	Aneurysmal Bone Cysts of the Jaws: Analysis of 17 Cases. Journal of Oral and Maxillofacial Surgery, 2010, 68, 2122-2128.	1.2	47
148	LMO2 promotes angiogenesis probably by upâ€regulation of bFGF in endothelial cells: an implication of its pathophysiological role in infantile haemangioma. Histopathology, 2010, 57, 622-632.	2.9	13
149	Mammalian Target of Rapamycin Pathway Promotes Tumor-Induced Angiogenesis in Adenoid Cystic Carcinoma: Its Suppression by Isoliquiritigenin through Dual Activation of c-Jun NH ₂ -Terminal Kinase and Inhibition of Extracellular Signal-Regulated Kinase. Journal of Pharmacology and Experimental Therapeutics. 2010. 334. 500-512.	2.5	51
150	Benign Fibro-Osseous Lesions of the Jaws: A Study of 127 Chinese Patients and Review of the Literature. International Journal of Surgical Pathology, 2009, 17, 122-134.	0.8	44
151	Desmoplastic ameloblastoma – A review. Oral Oncology, 2009, 45, 752-759.	1.5	56
152	Central giant cell granuloma of the jaws: clinical and radiological evaluation of 22 cases. Skeletal Radiology, 2009, 38, 903-909.	2.0	33
153	Epithelioid angiomatous nodule of head and neck. Pathology Research and Practice, 2009, 205, 753-757.	2.3	9
154	Expression of allograft inflammatory factor-1 and CD68 in haemangioma: implication in the progression of haemangioma. British Journal of Dermatology, 2008, 159, 811-819.	1.5	25
155	Immune response: A possible role in the pathophysiology of hemangioma. Medical Hypotheses, 2007, 68, 353-355.	1.5	10
156	Mast cells in hemangioma: A double-edged sword. Medical Hypotheses, 2007, 68, 805-807.	1.5	15
157	Odontogenic Ghost Cell Carcinoma in the Maxilla: A Case Report and Literature Review. Journal of Oral and Maxillofacial Surgery, 2007, 65, 1820-1824.	1.2	30
158	A postulated role for transcriptional regulator LMO2 in the proliferation and involution of hemangioma. Medical Hypotheses, 2006, 67, 1230-1232.	1.5	2
159	A possible hypoxia-induced endothelial proliferation in the pathogenesis of epithelioid hemangioma. Medical Hypotheses, 2006, 67, 1133-1135.	1.5	12
160	Epithelioid hemangioma in the oral mucosa: A clinicopathological study of seven cases and review of the literature. Oral Oncology, 2006, 42, 441-447.	1.5	34