List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627847/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A dynamic relaxation method with operator splitting and random-choice strategy for SPH. Journal of Computational Physics, 2022, 458, 111105.	1.9	5
2	An efficient and generalized solid boundary condition for SPH: Applications to multi-phase flow and fluid–structure interaction. European Journal of Mechanics, B/Fluids, 2022, 94, 276-292.	1.2	16
3	An artificial damping method for total Lagrangian SPH method with application in biomechanics. Engineering Analysis With Boundary Elements, 2022, 143, 1-13.	2.0	16
4	Grand challenges for Smoothed Particle Hydrodynamics numerical schemes. Computational Particle Mechanics, 2021, 8, 575-588.	1.5	114
5	Particle-based simulation of cold spray: Influence of oxide layer on impact process. Additive Manufacturing, 2021, 37, 101517.	1.7	13
6	A multi-resolution SPH method for fluid-structure interactions. Journal of Computational Physics, 2021, 429, 110028.	1.9	81
7	A feature-aware SPH for isotropic unstructured mesh generation. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113634.	3.4	4
8	A CAD-compatible body-fitted particle generator for arbitrarily complex geometry and its application to wave-structure interaction. Journal of Hydrodynamics, 2021, 33, 195-206.	1.3	27
9	Spot the Difference. ACM Transactions on Applied Perception, 2021, 18, 1-15.	1.2	0
10	Numerical investigation of minimum drag profiles in laminar flow using deep learning surrogates. Journal of Fluid Mechanics, 2021, 919, .	1.4	18
11	An integrative smoothed particle hydrodynamics method for modeling cardiac function. Computer Methods in Applied Mechanics and Engineering, 2021, 381, 113847.	3.4	27
12	Modeling of Cavitation Bubble Cloud with Discrete Lagrangian Tracking. Water (Switzerland), 2021, 13, 2684.	1.2	2
13	An efficient fully Lagrangian solver for modeling wave interaction with oscillating wave surge converter. Ocean Engineering, 2021, 236, 109540.	1.9	18
14	SPHinXsys: An open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics. Computer Physics Communications, 2021, 267, 108066.	3.0	61
15	A consistency-driven particle-advection formulation for weakly-compressible smoothed particle hydrodynamics. Computers and Fluids, 2021, 230, 105140.	1.3	7
16	A low dissipation method to cure the grid-aligned shock instability. Journal of Computational Physics, 2020, 401, 109004.	1.9	31
17	Deep Learning Methods for Reynolds-Averaged Navier–Stokes Simulations of Airfoil Flows. AIAA Journal, 2020, 58, 25-36.	1.5	216
18	A weakly compressible SPH method for violent multi-phase flows with high density ratio. Journal of Computational Physics, 2020, 402, 109092.	1.9	65

#	Article	IF	CITATIONS
19	The Evolution of Early Qing Regulations on Fugitive Slaves. Modern China, 2020, 46, 642-675.	0.3	0
20	Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics. Journal of Computational Physics, 2020, 404, 109135.	1.9	30
21	An L2-norm regularized incremental-stencil WENO scheme for compressible flows. Computers and Fluids, 2020, 213, 104721.	1.3	5
22	SPHinXsys: An open-source meshless, multi-resolution and multi-physics library. Software Impacts, 2020, 6, 100033.	0.8	29
23	Experimental study on a three-dimensional pulsating heat pipe with tandem tapered nozzles. Experimental Thermal and Fluid Science, 2020, 119, 110201.	1.5	17
24	Flame behaviours and deflagration severities of aluminium powder–air mixture in a 20-L sphere: Computational fluid dynamics modelling and experimental validation. Fuel, 2020, 276, 118028.	3.4	21
25	CFD analysis and experimental study on the effect of oxygen level, particle size, and dust concentration on the flame evolution characteristics and explosion severity of cornstarch dust cloud deflagration in a spherical chamber. Powder Technology, 2020, 372, 585-599.	2.1	29
26	Transient temperature evolution of pulverized coal cloud deflagration in a methane–oxygen atmosphere. Powder Technology, 2020, 366, 294-304.	2.1	18
27	A consistent parallel isotropic unstructured mesh generation method based on multi-phase SPH. Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112881.	3.4	13
28	Influence of ignition delay on explosion severities of the methane–coal particle hybrid mixture at elevated injection pressures. Powder Technology, 2020, 367, 860-876.	2.1	27
29	Supervised learning mixing characteristics of film cooling in a rocket combustor using convolutional neural networks. Acta Astronautica, 2020, 175, 11-18.	1.7	24
30	Qualitative and quantitative characterisation for explosion severity and gaseous–solid residues during methane–coal particle hybrid explosions: An approach to estimating the safety degree for underground coal mines. Chemical Engineering Research and Design, 2020, 141, 150-166.	2.7	46
31	Adaptive Anisotropic Unstructured Mesh Generation Method Based on Fluid Relaxation Analogy. Communications in Computational Physics, 2020, 27, 1275-1308.	0.7	1
32	Free-stream preserving linear-upwind and WENO schemes on curvilinear grids. Journal of Computational Physics, 2019, 399, 108907.	1.9	12
33	A Lagrangian Inertial Centroidal Voronoi Particle method for dynamic load balancing in particle-based simulations. Computer Physics Communications, 2019, 239, 53-63.	3.0	6
34	Partial characteristic decomposition for multi-species Euler equations. Computers and Fluids, 2019, 181, 364-382.	1.3	6
35	A species-clustered splitting scheme for the integration of large-scale chemical kinetics using detailed mechanisms. Combustion and Flame, 2019, 205, 41-54.	2.8	6
36	A weakly compressible SPH method with WENO reconstruction. Journal of Computational Physics, 2019, 392, 1-18.	1.9	43

#	Article	IF	CITATIONS
37	An isotropic unstructured mesh generation method based on a fluid relaxation analogy. Computer Methods in Applied Mechanics and Engineering, 2019, 350, 396-431.	3.4	18
38	Parallel fast-neighbor-searching and communication strategy for particle-based methods. Engineering Computations, 2019, 36, 899-929.	0.7	9
39	A split random time-stepping method for stiff and nonstiff detonation capturing. Combustion and Flame, 2019, 204, 397-413.	2.8	6
40	Improved Five- and Six-Point Targeted Essentially Nonoscillatory Schemes with Adaptive Dissipation. AIAA Journal, 2019, 57, 1143-1158.	1.5	32
41	A new multi-resolution parallel framework for SPH. Computer Methods in Applied Mechanics and Engineering, 2019, 346, 1156-1178.	3.4	36
42	A Targeted ENO Scheme as Implicit Model for Turbulent and Genuine Subgrid Scales. Communications in Computational Physics, 2019, 26, 311-345.	0.7	26
43	A conservative interface-interaction method for compressible multi-material flows. Journal of Computational Physics, 2018, 371, 870-895.	1.9	23
44	SPH modeling of fluid-structure interaction. Journal of Hydrodynamics, 2018, 30, 62-69.	1.3	55
45	High-resolution method for evolving complex interface networks. Computer Physics Communications, 2018, 225, 10-27.	3.0	4
46	An incremental-stencil WENO reconstruction for simulation of compressible two-phase flows. International Journal of Multiphase Flow, 2018, 104, 20-31.	1.6	32
47	High-order time-marching reinitialization for regional level-set functions. Journal of Computational Physics, 2018, 354, 311-319.	1.9	7
48	Liquid Splash Modeling with Neural Networks. Computer Graphics Forum, 2018, 37, 171-182.	1.8	44
49	A Consistent Analytical Formulation for Volume Estimation of Geometries Enclosed by Implicitly Defined Surfaces. SIAM Journal of Scientific Computing, 2018, 40, A1523-A1543.	1.3	3
50	A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws. Journal of Computational Physics, 2018, 374, 724-751.	1.9	62
51	Numerical investigation of homogeneous cavitation nucleation in a microchannel. Physical Review Fluids, 2018, 3, .	1.0	6
52	Phenomenology of bubble-collapse-driven penetration of biomaterial-surrogate liquid-liquid interfaces. Physical Review Fluids, 2018, 3, .	1.0	10
53	A weakly compressible SPH method based on a low-dissipation Riemann solver. Journal of Computational Physics, 2017, 335, 605-620.	1.9	119
54	A physics-motivated Centroidal Voronoi Particle domain decomposition method. Journal of Computational Physics, 2017, 335, 718-735.	1.9	15

#	Article	IF	CITATIONS
55	A generalized transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics, 2017, 337, 216-232.	1.9	68
56	Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. Journal of Computational Physics, 2017, 349, 97-121.	1.9	85
57	Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations. Computer Physics Communications, 2017, 221, 63-80.	3.0	12
58	A novel partitioning method for block-structured adaptive meshes. Journal of Computational Physics, 2017, 341, 447-473.	1.9	13
59	Perceptual evaluation of liquid simulation methods. ACM Transactions on Graphics, 2017, 36, 1-12.	4.9	11
60	Simulation of Individual Polymer Chains and Polymer Solutions with Smoothed Dissipative Particle Dynamics. Fluids, 2016, 1, 7.	0.8	20
61	Curvature boundary condition for a moving contact line. Journal of Computational Physics, 2016, 310, 329-341.	1.9	19
62	Simple gradient-based error-diffusion method. Journal of Electronic Imaging, 2016, 25, 043029.	0.5	8
63	On the convergence of the weakly compressible sharp-interface method for two-phase flows. Journal of Computational Physics, 2016, 324, 94-114.	1.9	6
64	Numerical study on super/hypersonic flow, mixing, and combustion phenomena, 2015. Advances in Mechanical Engineering, 2016, 8, 168781401663293.	0.8	0
65	Efficient formulation of scale separation for multi-scale modeling of interfacial flows. Journal of Computational Physics, 2016, 308, 411-420.	1.9	11
66	A family of high-order targeted ENO schemes for compressible-fluid simulations. Journal of Computational Physics, 2016, 305, 333-359.	1.9	218
67	A SPH Model for Incompressible Turbulence. Procedia IUTAM, 2015, 18, 66-75.	1.2	12
68	A conservative sharp interface method for incompressible multiphase flows. Journal of Computational Physics, 2015, 284, 547-565.	1.9	41
69	Towards consistence and convergence of conservative SPH approximations. Journal of Computational Physics, 2015, 301, 394-401.	1.9	32
70	An efficient low-dissipation hybrid weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2015, 301, 415-424.	1.9	36
71	Scale separation for multi-scale modeling of free-surface and two-phase flows with the conservative sharp interface method. Journal of Computational Physics, 2015, 280, 387-403.	1.9	17

72 Considerations for Hydrodynamic Slug Analysis in Pipelines. , 2014, , .

#	Article	IF	CITATIONS
73	Mesoscopic simulation of the transient behavior of semi-diluted polymer solution in a microchannel following extensional flow. Microfluidics and Nanofluidics, 2014, 16, 257-264.	1.0	9
74	Quantification of initial-data uncertainty on a shock-accelerated gas cylinder. Physics of Fluids, 2014, 26, 026101.	1.6	12
75	Adaptive multi-resolution method for compressible multi-phase flows with sharp interface model and pyramid data structure. Journal of Computational Physics, 2014, 262, 131-152.	1.9	49
76	Numerical Study on Super/Hypersonic Flow, Mixing, and Combustion Phenomena. Advances in Mechanical Engineering, 2014, 6, 765315.	0.8	0
77	On the Richtmyer–Meshkov instability evolving from a deterministic multimode planar interface. Journal of Fluid Mechanics, 2014, 755, 429-462.	1.4	91
78	A physically consistent weakly compressible high-resolution approach to underresolved simulations of incompressible flows. Computers and Fluids, 2013, 86, 109-124.	1.3	17
79	Positivity-preserving method for high-order conservative schemes solving compressible Euler equations. Journal of Computational Physics, 2013, 242, 169-180.	1.9	163
80	A transport-velocity formulation for smoothed particle hydrodynamics. Journal of Computational Physics, 2013, 241, 292-307.	1.9	156
81	Reinstating the Authority of the Five Punishments: A New Perspective on Legal Privilege for Bannermen. Late Imperial China, 2013, 34, 28-51.	0.2	5
82	Numerical simulation of a Richtmyer–Meshkov instability with an adaptive central-upwind sixth-order WENO scheme. Physica Scripta, 2013, T155, 014016.	1.2	15
83	On the Kolmogorov inertial subrange developing from Richtmyer-Meshkov instability. Physics of Fluids, 2013, 25, .	1.6	26
84	Numerical investigation of collapsing cavity arrays. Physics of Fluids, 2012, 24, .	1.6	61
85	A generalized wall boundary condition for smoothed particle hydrodynamics. Journal of Computational Physics, 2012, 231, 7057-7075.	1.9	532
86	Numerical modelling and investigation of symmetric and asymmetric cavitation bubble dynamics. Computers and Fluids, 2012, 69, 1-19.	1.3	140
87	Anti-diffusion interface sharpening technique for two-phase compressible flow simulations. Journal of Computational Physics, 2012, 231, 4304-4323.	1.9	102
88	Scale separation for implicit large eddy simulation. Journal of Computational Physics, 2011, 230, 7240-7249.	1.9	72
89	Wavelet-based adaptive multi-resolution solver on heterogeneous parallel architecture for computational fluid dynamics. Computer Science - Research and Development, 2011, 26, 197-203.	2.7	8
90	Anti-diffusion method for interface steepening in two-phase incompressible flow. Journal of Computational Physics, 2011, 230, 5155-5177.	1.9	56

#	Article	IF	CITATIONS
91	Numerical simulation of tethered DNA in shear flow. Journal of Physics Condensed Matter, 2011, 23, 184118.	0.7	14
92	A conservative SPH method for surfactant dynamics. Journal of Computational Physics, 2010, 229, 1909-1926.	1.9	64
93	A conservative immersed interface method for Large-Eddy Simulation of incompressible flows. Journal of Computational Physics, 2010, 229, 6300-6317.	1.9	97
94	A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation. Journal of Computational Physics, 2010, 229, 5011-5021.	1.9	218
95	A splitting scheme for highly dissipative smoothed particle dynamics. Journal of Computational Physics, 2010, 229, 5457-5464.	1.9	35
96	An adaptive central-upwind weighted essentially non-oscillatory scheme. Journal of Computational Physics, 2010, 229, 8952-8965.	1.9	249
97	Particle-layering effect in wall-bounded dissipative particle dynamics. Physical Review E, 2010, 82, 066704.	0.8	11
98	Numerical Investigation of the Micromechanical Behavior of DNA Immersed in a Hydrodynamic Flow. , 2010, , 147-160.		0
99	An Immersed Interface Method in the Framework of Implicit Large-Eddy Simulation. ERCOFTAC Series, 2010, , 109-115.	0.1	0
100	Self-diffusion coefficient in smoothed dissipative particle dynamics. Journal of Chemical Physics, 2009, 130, 021101.	1.2	38
101	A constant-density approach for incompressible multi-phase SPH. Journal of Computational Physics, 2009, 228, 2082-2091.	1.9	106
102	On the HLLC Riemann solver for interface interaction in compressible multi-fluid flow. Journal of Computational Physics, 2009, 228, 6572-6589.	1.9	86
103	Shock-induced collapse of bubbles in liquid. , 2009, , 931-936.		1
104	Moving Contact Line with Balanced Stress Singularities. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 87-94.	0.1	0
105	Splitting for Highly Dissipative Smoothed Particle Dynamics. IUTAM Symposium on Cellular, Molecular and Tissue Mechanics, 2009, , 207-218.	0.1	0
106	Smoothed dissipative particle dynamics model for polymer molecules in suspension. Physical Review E, 2008, 77, 066703.	0.8	55
107	An incompressible multi-phase SPH method. Journal of Computational Physics, 2007, 227, 264-278.	1.9	388
108	A multi-phase SPH method for macroscopic and mesoscopic flows. Journal of Computational Physics, 2006, 213, 844-861.	1.9	537

#	Article	IF	CITATIONS
109	A conservative interface method for compressible flows. Journal of Computational Physics, 2006, 219, 553-578.	1.9	198
110	Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Physics of Fluids, 2006, 18, 101702.	1.6	65
111	The structure and evolution of a two-dimensional H2/O2/Ar cellular detonation. Shock Waves, 2005, 14, 37-44.	1.0	35
112	Numerical studies on shock cell interaction. , 2005, , 1205-1210.		0
113	The cellular structure of a two-dimensional H2/O2/Ar detonation wave. Combustion Theory and Modelling, 2004, 8, 339-359.	1.0	61
114	Kinetic energy fix for low internal energy flows. Journal of Computational Physics, 2004, 193, 243-259.	1.9	11
115	An interface interaction method for compressible multifluids. Journal of Computational Physics, 2004, 198, 35-64.	1.9	111
116	Numerical Studies on the Reaction Zones in a Detonation Wave with a Detailed Chemical Reaction Model. , 2003, , 502-507.		0
117	Analytical study of idealized two-dimensional cellular detonations. Shock Waves, 2002, 11, 475-480.	1.0	6