Hongyan Sun

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7627835/hongyan-sun-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,153 50 114 34 h-index g-index citations papers 128 3,768 8.2 5.33 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
114	Reaction-based fluorescent and chemiluminescent probes for formaldehyde detection and imaging Chemical Communications, 2022,	5.8	1
113	FGFR2-BRD4 Axis Regulates Transcriptional Networks of Histone 3 Modification and Synergy Between Its Inhibitors and PD-1/PD-L1 in a TNBC Mouse Model <i>Frontiers in Immunology</i> , 2022 , 13, 86	12214	
112	Robust Artificial Interphases Constructed by a Versatile Protein-Based Binder for High-Voltage Na-Ion Battery Cathodes <i>Advanced Materials</i> , 2022 , e2202624	24	1
111	Novel Electrophilic Warhead Targeting a Triple-Negative Breast Cancer Driver in Live Cells Revealed by "Inverse Drug Discovery". <i>Journal of Medicinal Chemistry</i> , 2021 , 64, 15582-15592	8.3	2
110	Surface modification of metal materials for high-performance electrocatalytic carbon dioxide reduction. <i>Matter</i> , 2021 , 4, 888-926	12.7	21
109	Manganese-Based Materials for Rechargeable Batteries beyond Lithium-Ion. <i>Advanced Energy Materials</i> , 2021 , 11, 2100867	21.8	27
108	A reversible microarray immobilization strategy based on thiol-quinone reaction. <i>Chinese Chemical Letters</i> , 2021 , 33, 213-213	8.1	O
107	BING, a novel antimicrobial peptide isolated from Japanese medaka plasma, targets bacterial envelope stress response by suppressing cpxR expression. <i>Scientific Reports</i> , 2021 , 11, 12219	4.9	1
106	An activatable AIEgen probe for in-situ monitoring and long-term tracking of ferrous ions in living cells. <i>Dyes and Pigments</i> , 2021 , 190, 109271	4.6	2
105	Controllable Cleavage of C-N Bond-Based Fluorescent and Photoacoustic Dual-Modal Probes for the Detection of HS in Living Mice <i>ACS Applied Bio Materials</i> , 2021 , 4, 2020-2025	4.1	6
104	Single-step fluorescent probes to detect decrotonylation activity of HDACs through intramolecular reactions. <i>European Journal of Medicinal Chemistry</i> , 2021 , 212, 113120	6.8	2
103	Colorimetric and Fluorescent Dual-Signal Chemosensor for Lysine and Arginine and Its Application to Detect Amines in Solid-Phase Peptide Synthesis <i>ACS Applied Bio Materials</i> , 2021 , 4, 6558-6564	4.1	4
102	Development and application of novel electrophilic warheads in target identification and drug discovery. <i>Biochemical Pharmacology</i> , 2021 , 190, 114636	6	1
101	Synthesis and fluorescence properties of red-to-near-infrared-emitting push-pull dyes based on benzodioxazole scaffolds. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 8512-8517	7.3	0
100	NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. <i>Chemical Society Reviews</i> , 2021 , 50, 7436-7495	58.5	25
99	Stimuli-controlled peptide self-assembly with secondary structure transitions and its application in drug release. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 4664-4671	7.8	3
98	A fluorescent molecular rotor probe for tracking plasma membranes and exosomes in living cells. <i>Chemical Communications</i> , 2020 , 56, 8480-8483	5.8	13

(2019-2020)

97	Two quenching groups are better than one: A robust strategy for constructing HOCl fluorescent probe with minimized background fluorescence and ultra-high sensitivity and its application of HOCl imaging in living cells and tissues. <i>Sensors and Actuators B: Chemical</i> , 2020 , 310, 127890	8.5	12
96	Quantitative Proteomics Reveals Cellular Off-Targets of a DDR1 Inhibitor. <i>ACS Medicinal Chemistry Letters</i> , 2020 , 11, 535-540	4.3	6
95	Color-Tunable Light-up Bioorthogonal Probes for In Vivo Two-Photon Fluorescence Imaging. <i>Chemistry - A European Journal</i> , 2020 , 26, 4576-4582	4.8	6
94	Desuccinylation-Triggered Peptide Self-Assembly: Live Cell Imaging of SIRT5 Activity and Mitochondrial Activity Modulation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18150-18159	16.4	34
93	An activity-based fluorescent probe and its application for differentiating alkaline phosphatase activity in different cell lines. <i>Chemical Communications</i> , 2020 , 56, 13323-13326	5.8	7
92	A pyrene-based ratiometric fluorescent probe with a large Stokes shift for selective detection of hydrogen peroxide in living cells. <i>Journal of Pharmaceutical Analysis</i> , 2020 , 10, 490-497	14	7
91	A Peptide Stapling Strategy with Built-In Fluorescence by Direct Late-Stage C(sp)-H Olefination of Tryptophan. <i>Chemistry - A European Journal</i> , 2020 , 26, 16122-16128	4.8	6
90	Crystal Phase Control of Gold Nanomaterials by Wet-Chemical Synthesis. <i>Accounts of Chemical Research</i> , 2020 , 53, 2106-2118	24.3	34
89	Phase Engineering of Nanomaterials for Clean Energy and Catalytic Applications. <i>Advanced Energy Materials</i> , 2020 , 10, 2002019	21.8	39
88	Intracellular delivery of therapeutic proteins through N-terminal site-specific modification. <i>Chemical Communications</i> , 2020 , 56, 11473-11476	5.8	6
87	An ultra-sensitive and ratiometric fluorescent probe based on the DTBET process for Hg detection and imaging applications. <i>Analyst, The</i> , 2019 , 144, 1353-1360	5	33
86	A mitochondrion-targeting turn-on fluorescent probe detection of endogenous hydroxyl radicals in living cells and zebrafish. <i>Sensors and Actuators B: Chemical</i> , 2019 , 296, 126706	8.5	6
85	Chemical Proteomic Profiling of Bromodomains Enables the Wide-Spectrum Evaluation of Bromodomain Inhibitors in Living Cells. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11497-115	05 ^{6.4}	13
84	Ratiometric Fluorescent Probe for Monitoring Endogenous Methylglyoxal in Living Cells and Diabetic Blood Samples. <i>Analytical Chemistry</i> , 2019 , 91, 5646-5653	7.8	19
83	Nanotoxicity of Boron Nitride Nanosheet to Bacterial Membranes. <i>Langmuir</i> , 2019 , 35, 6179-6187	4	24
82	A fluorogenic HS-triggered prodrug based on thiolysis of the NBD amine. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2019 , 29, 126627	2.9	2
81	An ultra-sensitive ratiometric fluorescent probe for hypochlorous acid detection by the synergistic effect of AIE and TBET and its application of detecting exogenous/endogenous HOCl in living cells. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5125-5131	7.3	28
80	Chemical Probes Reveal Sirt2 S New Function as a Robust "Eraser" of Lysine Lipoylation. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18428-18436	16.4	13

79	Dual-Cross-Linked Supramolecular Polysiloxanes for Mechanically Tunable, Damage-Healable and Oil-Repellent Polymeric Coatings. <i>ACS Applied Materials & Discrete Materials & Disc</i>	9.5	23
78	Thermoresponsive drug delivery to mitochondria in vivo. <i>Chemical Communications</i> , 2019 , 55, 14645-14	6 4.8	10
77	Identification of the YEATS domain of GAS41 as a pH-dependent reader of histone succinylation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2365-2370	11.5	30
76	A highly efficient dual-diazonium reagent for protein crosslinking and construction of a virus-based gel. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 3353-3357	3.9	8
75	A proximity-induced covalent fluorescent probe for selective detection of bromodomain 4. <i>Chinese Chemical Letters</i> , 2018 , 29, 1147-1150	8.1	4
74	Ultra-sensitive fluorescent probes for hypochlorite acid detection and exogenous/endogenous imaging of living cells. <i>Chemical Communications</i> , 2018 , 54, 7967-7970	5.8	37
73	Reaction-Based Off-On Near-infrared Fluorescent Probe for Imaging Alkaline Phosphatase Activity in Living Cells and Mice. <i>ACS Applied Materials & Description</i> (2017), 9, 6796-6803	9.5	102
72	Molecular engineering of d-A-d-based non-linearity fluorescent probe for quick detection of thiophenol in living cells and tissues. <i>Sensors and Actuators B: Chemical</i> , 2017 , 244, 958-964	8.5	16
71	Investigation of the Subcellular Neurotoxicity of Amyloid-I Using a Device Integrating Microfluidic Perfusion and Chemotactic Guidance. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1600895	10.1	11
70	A reaction-based near-infrared fluorescent sensor for Cu detection in aqueous buffer and its application in living cells and tissues imaging. <i>Biosensors and Bioelectronics</i> , 2017 , 94, 24-29	11.8	60
69	Development of "Liquid-like" Copolymer Nanocoatings for Reactive Oil-Repellent Surface. <i>ACS Nano</i> , 2017 , 11, 2248-2256	16.7	87
68	Water-Soluble Polythiophene for Two-Photon Excitation Fluorescence Imaging and Photodynamic Therapy of Cancer. <i>ACS Applied Materials & Samp; Interfaces</i> , 2017 , 9, 14590-14595	9.5	36
67	Rational Development of Near-Infrared Fluorophores with Large Stokes Shifts, Bright One-Photon, and Two-Photon Emissions for Bioimaging and Biosensing Applications. <i>Chemistry - A European Journal</i> , 2017 , 23, 8736-8740	4.8	43
66	In situ reduction of silver nanoparticles on hybrid polydopamine-copper phosphate nanoflowers with enhanced antimicrobial activity. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 5311-5317	7-3	22
65	Amberlite IRA 402(OH) Mediated Green Synthesis of Novel Benzothiazolequinoline Conjugates as Cancer Theranostics. <i>ChemistrySelect</i> , 2017 , 2, 2480-2486	1.8	7
64	Molecular engineering of a mitochondrial-targeting two-photon in and near-infrared out fluorescent probe for gaseous signal molecules HS in deep tissue bioimaging. <i>Biosensors and Bioelectronics</i> , 2017 , 91, 699-705	11.8	60
63	A fast-response fluorescent probe for hypochlorous acid detection and its application in exogenous and endogenous HOCl imaging of living cells. <i>Chemical Communications</i> , 2017 , 53, 12349-12352	5.8	34
62	Regioselective and Direct Azidation of Anilines via Cu(II)-Catalyzed C-H Functionalization in Water. Journal of Organic Chemistry, 2017 , 82, 11212-11217	4.2	23

(2015-2017)

61	Controlled cell patterning on bioactive surfaces with special wettability. <i>Journal of Bionic Engineering</i> , 2017 , 14, 440-447	2.7	9
60	Construction of an alkaline phosphatase-specific two-photon probe and its imaging application in living cells and tissues. <i>Biomaterials</i> , 2017 , 140, 220-229	15.6	44
59	Site-selective covalent reactions on proteinogenic amino acids. <i>Current Opinion in Biotechnology</i> , 2017 , 48, 220-227	11.4	12
58	A highly selective two-photon fluorogenic probe for formaldehyde and its bioimaging application in cells and zebrafish. <i>Sensors and Actuators B: Chemical</i> , 2017 , 241, 1050-1056	8.5	46
57	An efficient two-photon ratiometric fluorescent probe platform for dual-channel imaging of lysosomes in living cells and tissues. <i>Sensors and Actuators B: Chemical</i> , 2017 , 238, 274-280	8.5	25
56	A Versatile Microarray Immobilization Strategy Based on a Biorthogonal Reaction Between Tetrazine and Trans-Cyclooctene. <i>Methods in Molecular Biology</i> , 2017 , 1518, 67-80	1.4	2
55	Recent Advances in Synthesis and Identification of Cyclic Peptides for Bioapplications. <i>Current Topics in Medicinal Chemistry</i> , 2017 , 17, 2302-2318	3	19
54	A thiol fluorescent probe reveals the intricate modulation of cysteine's reactivity by Cu(II). <i>Talanta</i> , 2016 , 146, 477-82	6.2	18
53	Fluorescent Probes for Single-Step Detection and Proteomic Profiling of Histone Deacetylases. Journal of the American Chemical Society, 2016 , 138, 15596-15604	16.4	48
52	Target identification of natural and traditional medicines with quantitative chemical proteomics approaches. <i>Pharmacology & Therapeutics</i> , 2016 , 162, 10-22	13.9	76
51	High-Throughput Screening of Substrate Specificity for Protein Tyrosine Phosphatases (PTPs) on Phosphopeptide Microarrays. <i>Methods in Molecular Biology</i> , 2016 , 1368, 181-96	1.4	12
50	Interfacial Engineering of Bimetallic Ag/Pt Nanoparticles on Reduced Graphene Oxide Matrix for Enhanced Antimicrobial Activity. <i>ACS Applied Materials & District Activity</i> (1988) 19834-40	9.5	71
49	A minimalist fluorescent probe for differentiating Cys, Hcy and GSH in live cells. <i>Chemical Science</i> , 2016 , 7, 256-260	9.4	176
48	A new ratiometric two-photon fluorescent probe for imaging of lysosomes in living cells and tissues. <i>Tetrahedron</i> , 2016 , 72, 4637-4642	2.4	20
47	A high-resolution mitochondria-targeting ratiometric fluorescent probe for detection of the endogenous hypochlorous acid. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2016 , 166, 129-134	4.4	26
46	A novel ratiometric two-photon fluorescent probe for imaging of Pd(2+) ions in living cells and tissues. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2016 , 166, 25-30	4.4	26
45	Peptide-Decorated Gold Nanoparticles as Functional Nano-Capping Agent of Mesoporous Silica Container for Targeting Drug Delivery. <i>ACS Applied Materials & Delivery (Naterials &</i>	9.5	69
44	An iminocoumarin benzothiazole-based fluorescent probe for imaging hydrogen sulfide in living cells. <i>Talanta</i> , 2015 , 135, 149-54	6.2	47

43	Sensitivity improvement of kukoamine determination by complexation with dihydrogen phosphate anions in capillary zone electrophoresis. <i>Electrophoresis</i> , 2015 , 36, 1801-7	3.6	5
42	The rational design of a peptide-based hydrogel responsive to H2S. <i>Chemical Communications</i> , 2015 , 51, 17273-6	5.8	35
41	A highly selective and sensitive fluorescent thiol probe through dual-reactive and dual-quenching groups. <i>Chemical Communications</i> , 2015 , 51, 2029-32	5.8	96
40	Design and Synthesis of Near-infrared Fluorescent Probes for Imaging of Biological Nitroxyl. <i>Scientific Reports</i> , 2015 , 5, 16979	4.9	22
39	A FRET-based ratiometric fluorescent probe for nitroxyl detection in living cells. <i>ACS Applied Materials & ACS Applied & </i>	9.5	77
38	Single layer linear array of microbeads for multiplexed analysis of DNA and proteins. <i>Biosensors and Bioelectronics</i> , 2014 , 54, 297-305	11.8	17
37	A general colorimetric method for detecting protease activity based on peptide-induced gold nanoparticle aggregation. <i>RSC Advances</i> , 2014 , 4, 6560-6563	3.7	17
36	Microarray immobilization of biomolecules using a fast trans-cyclooctene (TCO)-tetrazine reaction. <i>Chemical Communications</i> , 2014 , 50, 11818-21	5.8	13
35	Fluorescent probes for detecting monoamine oxidase activity and cell imaging. <i>Organic and Biomolecular Chemistry</i> , 2014 , 12, 2033-6	3.9	32
34	Superhydrophobic surface with hierarchical architecture and bimetallic composition for enhanced antibacterial activity. <i>ACS Applied Materials & Discrete Supplied Materials & Discrete Su</i>	9.5	71
33	Identification of kukoamines as the novel markers for quality assessment of Lycii Cortex. <i>Food Research International</i> , 2014 , 55, 373-380	7	13
32	A highly sensitive fluorescent probe for imaging hydrogen sulfide in living cells. <i>Tetrahedron Letters</i> , 2013 , 54, 4826-4829	2	33
31	Simultaneous determination of flavonoid analogs in Scutellariae Barbatae Herba by Etyclodextrin and acetonitrile modified capillary zone electrophoresis. <i>Talanta</i> , 2013 , 105, 393-402	6.2	39
30	Site-specific immobilization of biomolecules by a biocompatible reaction between terminal cysteine and 2-cyanobenzothiazole. <i>Chemical Communications</i> , 2013 , 49, 8644-6	5.8	25
29	Phosphopeptide microarrays for comparative proteomic profiling of cellular lysates. <i>Methods in Molecular Biology</i> , 2013 , 1002, 233-51	1.4	13
28	Recent advances in microarray technologies for proteomics. <i>Chemistry and Biology</i> , 2013 , 20, 685-99		67
27	Small-Molecule Microarrays 2013 , 431-454		1
26	Preparation of Small-Molecule Microarrays by trans-Cyclooctene Tetrazine Ligation and Their Application in the High-Throughput Screening of Protein Protein Interaction Inhibitors of Bromodomains. Angewandte Chemie 2013, 125, 14310-14314	3.6	9

(2007-2013)

25	Preparation of small-molecule microarrays by trans-cyclooctene tetrazine ligation and their application in the high-throughput screening of protein-protein interaction inhibitors of bromodomains. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 14060-4	16.4	36
24	"Stainomics": identification of mitotracker labeled proteins in mammalian cells. <i>Electrophoresis</i> , 2013 , 34, 1957-64	3.6	10
23	A selective fluorescent probe for thiols based on <code>#unsaturated</code> acyl sulfonamide. <i>Chemical Communications</i> , 2012 , 48, 10672-4	5.8	59
22	One-Pot Dual-Labeling of a Protein by Two Chemoselective Reactions. <i>Angewandte Chemie</i> , 2011 , 123, 8437-8440	3.6	4
21	Total synthesis and biological evaluation of (-)-englerin A and B: synthesis of analogues with improved activity profile. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3998-4002	16.4	67
20	One-pot dual-labeling of a protein by two chemoselective reactions. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 8287-90	16.4	39
19	A Highly Efficient Strategy for Modification of Proteins at the C Terminus. <i>Angewandte Chemie</i> , 2010 , 122, 9607-9611	3.6	11
18	A highly efficient strategy for modification of proteins at the C terminus. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9417-21	16.4	62
17	Activity-based high-throughput determination of PTPs substrate specificity using a phosphopeptide microarray. <i>Biopolymers</i> , 2010 , 94, 810-9	2.2	27
16	High-throughput screening of catalytically inactive mutants of protein tyrosine phosphatases (PTPs) in a phosphopeptide microarray. <i>Chemical Communications</i> , 2009 , 677-9	5.8	46
15	Peptide-Based Microarray 2009 , 139-167		1
14	Peptide microarrays for high-throughput studies of Ser/Thr phosphatases. <i>Nature Protocols</i> , 2008 , 3, 1485-93	18.8	21
13	Activity-based protein profiling: new developments and directions in functional proteomics. <i>ChemBioChem</i> , 2008 , 9, 667-75	3.8	75
12	Peptide microarray for high-throughput determination of phosphatase specificity and biology. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 1698-702	16.4	60
11	Rapid affinity-based fingerprinting of 14-3-3 isoforms using a combinatorial peptide microarray. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7438-41	16.4	33
10	Peptide Microarray for High-Throughput Determination of Phosphatase Specificity and Biology. <i>Angewandte Chemie</i> , 2008 , 120, 1722-1726	3.6	11
9	Rapid Affinity-Based Fingerprinting of 14-3-3 Isoforms Using a Combinatorial Peptide Microarray. <i>Angewandte Chemie</i> , 2008 , 120, 7548-7551	3.6	12
8	Inhibitor fingerprinting of matrix metalloproteases using a combinatorial peptide hydroxamate library. <i>Journal of the American Chemical Society</i> , 2007 , 129, 7848-58	16.4	55

7	Activity based fingerprinting of proteases using FRET peptides. <i>Biopolymers</i> , 2007 , 88, 141-9	2.2	36
6	Inhibitor fingerprinting of metalloproteases using microplate and microarray platforms: an enabling technology in Catalomics. <i>Nature Protocols</i> , 2007 , 2, 2126-38	18.8	12
5	Recent developments in microarray-based enzyme assays: from functional annotation to substrate/inhibitor fingerprinting. <i>Analytical and Bioanalytical Chemistry</i> , 2006 , 386, 416-26	4.4	50
4	Small Molecule Microarrays: Applications Using Specially Tagged Chemical Libraries. <i>QSAR and Combinatorial Science</i> , 2006 , 25, 1009-1019		10
3	Site-specific immobilization of proteins in a microarray using intein-mediated protein splicing. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2005 , 15, 2447-51	2.9	51
2	A dual-function chemical probe for detecting erasers of lysine lipoylation. <i>Frontiers of Chemical Science and Engineering</i> ,1	4.5	1
1	H 2 S-Responsive Small-Molecule Nanocarriers for Drug Delivery to Colorectal Tumors. <i>Advanced Therapeutics</i> ,2200044	4.9	