
Tian Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Magnetic Micro-/Nanopropellers for Biomedicine. , 2022, , 389-411.		3
2	Melt Electrospinning Writing of Magnetic Microrobots. Advanced Science, 2021, 8, 2003177.	5.6	29
3	Soft Liver Phantom with a Hollow Biliary System. Annals of Biomedical Engineering, 2021, 49, 2139-2149.	1.3	13
4	Soft Urinary Bladder Phantom for Endoscopic Training. Annals of Biomedical Engineering, 2021, 49, 2412-2420.	1.3	7
5	Panoramic Imaging Assessment of Different Bladder Phantoms – An Evaluation Study. Urology, 2021, 156, e103-e110.	0.5	2
6	A High-Fidelity Phantom for the Simulation and Quantitative Evaluation of Transurethral Resection of the Prostate. Annals of Biomedical Engineering, 2020, 48, 437-446.	1.3	25
7	Acoustic Holographic Cell Patterning in a Biocompatible Hydrogel. Advanced Materials, 2020, 32, e1904181.	11.1	127
8	Acoustofluidic Tweezers for the 3D Manipulation of Microparticles. , 2020, , .		3
9	Microchannels with Self-Pumping Walls. ACS Nano, 2020, 14, 13673-13680.	7.3	26
10	Spatial ultrasound modulation by digitally controlling microbubble arrays. Nature Communications, 2020, 11, 4537.	5.8	61
11	A Helical Microrobot with an Optimized Propeller-Shape for Propulsion in Viscoelastic Biological Media. Robotics, 2019, 8, 87.	2.1	20
12	Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium. Advanced Materials, 2019, 31, e1807382.	11.1	27
13	Soft Phantom for the Training of Renal Calculi Diagnostics and Lithotripsy. , 2019, 2019, 3716-3719.		6
14	A Magnetic Actuation System for the Active Microrheology in Soft Biomaterials. , 2019, , .		4
15	Soft Continuous Surface for Micromanipulation driven by Light-controlled Hydrogels. , 2019, , .		2
16	Acoustic Fabrication via the Assembly and Fusion of Particles. Advanced Materials, 2018, 30, 1704507.	11.1	103
17	Role of symmetry in driven propulsion at low Reynolds number. Physical Review E, 2018, 98, .	0.8	27
18	Fast spatial scanning of 3D ultrasound fields via thermography. Applied Physics Letters, 2018, 113, .	1.5	7

Tian Qiu

#	Article	IF	CITATIONS
19	A swarm of slippery micropropellers penetrates the vitreous body of the eye. Science Advances, 2018, 4, eaat4388.	4.7	402
20	Soft Miniaturized Linear Actuators Wirelessly Powered by Rotating Permanent Magnets. , 2018, , .		6
21	NANOSCALE ROBOTIC AGENTS IN BIOLOGICAL FLUIDS AND TISSUES. , 2018, , 19-42.		1
22	Akustische Hologramme steuern Partikel. Physik in Unserer Zeit, 2017, 48, 9-10.	0.0	0
23	Micro- and nanorobots in Newtonian and biological viscoelastic fluids. , 2017, , 133-162.		7
24	Active Acoustic Surfaces Enable the Propulsion of a Wireless Robot. Advanced Materials Interfaces, 2017, 4, 1700933.	1.9	18
25	Wireless Acoustic-Surface Actuators for Miniaturized Endoscopes. ACS Applied Materials & Interfaces, 2017, 9, 42536-42543.	4.0	21
26	Soft 3D-Printed Phantom of the Human Kidney with Collecting System. Annals of Biomedical Engineering, 2017, 45, 963-972.	1.3	127
27	Locomotion of light-driven soft microrobots through a hydrogel via local melting. , 2017, , .		3
28	A Wirelessly Actuated Robotic Arm for Endoscopy. , 2017, , .		0
29	Active Nanorheology with Plasmonics. Nano Letters, 2016, 16, 4887-4894.	4.5	57
30	Wireless actuation with functional acoustic surfaces. Applied Physics Letters, 2016, 109, .	1.5	23
31	Towards photo-induced swimming: actuation of liquid crystalline elastomer in water. Proceedings of SPIE, 2016, , .	0.8	1
32	Wireless actuator based on ultrasonic bubble streaming. , 2016, , .		1
33	Holograms for acoustics. Nature, 2016, 537, 518-522.	13.7	571
34	Nanomotors. European Physical Journal: Special Topics, 2016, 225, 2241-2254.	1.2	17
35	Auxetic metamaterial simplifies soft robot design. , 2016, , .		39
36	Structured light enables biomimetic swimming and versatile locomotion of photoresponsive softÂmicrorobots. Nature Materials, 2016, 15, 647-653.	13.3	757

Tian Qiu

#	ARTICLE	IF	CITATIONS
37	3D-printed soft microrobot for swimming in biological fluids. , 2015, 2015, 4922-5.		2
38	Active microrheology of the vitreous of the eye applied to nanorobot propulsion. , 2014, , .		8
39	The construction of an interfacial valve-based microfluidic chip for thermotaxis evaluation of human sperm. Biomicrofluidics, 2014, 8, 024102.	1.2	39
40	Swimming by reciprocal motion at low Reynolds number. Nature Communications, 2014, 5, 5119.	5.8	349
41	From Nanohelices to Magnetically Actuated Microdrills: A Universal Platform for Some of the Smallest Untethered Microrobotic Systems for Low Reynolds Number and Biological Environments. Lecture Notes in Computer Science, 2014, , 53-65.	1.0	1
42	Rapid fabrication of a microdevice with concave microwells and its application in embryoid body formation. Biomicrofluidics, 2012, 6, 16504-1650411.	1.2	26
43	Rapid and on-site analysis of illegal drugs on the nano–microscale using a deep ultraviolet-visible reflected optical fiber sensor. Analyst, The, 2012, 137, 1596.	1.7	22
44	In Vitro Fertilization on a Single-Oocyte Positioning System Integrated with Motile Sperm Selection and Early Embryo Development. Analytical Chemistry, 2011, 83, 2964-2970.	3.2	80
45	Palmtop spectrophotometer for DNA and protein measurement in micro-nanoliter assays. Journal of Physics: Conference Series, 2011, 277, 012029.	0.3	Ο
46	A microfluidic "treadmill" for sperm selective trapping according to motility classification. , 2011, , .		1
47	Integration of Sperm Motility and Chemotaxis Screening with a Microchannel-Based Device. Clinical Chemistry, 2010, 56, 1270-1278.	1.5	95
48	Integration of single oocyte trapping, in vitro fertilization and embryo culture in a microwell-structured microfluidic device. Lab on A Chip, 2010, 10, 2848.	3.1	96