
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627744/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vacuum ultraviolet photochemistry of sulfuric acid vapor: A combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2022, , .	1.3	3
2	Direct observation of the particle-phase bicyclic products from OH-initiated oxidation of 1,3,5-trimethylbenzene under NOx-free conditions. Atmospheric Environment, 2022, 271, 118914.	1.9	4
3	Rate Constants and Branching Ratios for the Self-Reaction of Acetyl Peroxy (CH3C(O)O2•) and Its Reaction with CH3O2. Atmosphere, 2022, 13, 186.	1.0	3
4	Rate Constant and Branching Ratio for the Reactions of the Ethyl Peroxy Radical with Itself and with the Ethoxy Radical. ACS Earth and Space Chemistry, 2022, 6, 181-188.	1.2	6
5	Reaction kinetics of 1,4-cyclohexadienes with OH radicals: an experimental and theoretical study. Physical Chemistry Chemical Physics, 2022, 24, 7836-7847.	1.3	3
6	Vacuum ultraviolet photochemistry of the conformers of the ethyl peroxy radical. Physical Chemistry Chemical Physics, 2021, 23, 22096-22102.	1.3	6
7	Palm-Sized Laser Spectrometer with High Robustness and Sensitivity for Trace Gas Detection Using a Novel Double-Layer Toroidal Cell. Analytical Chemistry, 2021, 93, 4552-4558.	3.2	33
8	Photolysis of multifunctional carbonyl compounds under natural irradiation at EUPHORE. Atmospheric Environment, 2021, 253, 118352.	1.9	1
9	Absolute Absorption Cross-Section of the Ãfâ†XËœ Electronic Transition of the Ethyl Peroxy Radical and Rate Constant of Its Cross Reaction with HO2. Photonics, 2021, 8, 296.	0.9	8
10	Experimental determination of the rate constants of the reactions of HO 2 Â+ÂDO 2 and DO 2 Â+ÂDO 2. International Journal of Chemical Kinetics, 2020, 52, 197-206.	1.0	6
11	Measurement of nitric oxide from cigarette burning using TDLAS based on quantum cascade laser. Optics and Laser Technology, 2020, 124, 105963.	2.2	25
12	Threshold photoelectron spectroscopy of the methoxy radical. Journal of Chemical Physics, 2020, 153, 031101.	1.2	9
13	ldentifying isomers of peroxy radicals in the gas phase: 1-C ₃ H ₇ O ₂ <i>vs.</i> 2-C ₃ H ₇ O ₂ . Chemical Communications, 2020, 56, 15525-15528.	2.2	12
14	Threshold photoelectron spectroscopy of the HO2 radical. Journal of Chemical Physics, 2020, 153, 124306.	1.2	7
15	Vacuum ultraviolet photodynamics of the methyl peroxy radical studied by double imaging photoelectron photoion coincidences. Journal of Chemical Physics, 2020, 152, 104301.	1.2	17
16	The absorption spectrum and absolute absorption cross sections of acetylperoxy radicals, CH3C(O)O2 in the near IR. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245, 106877.	1.1	3
17	Water does not catalyze the reaction of OH radicals with ethanol. Physical Chemistry Chemical Physics, 2020, 22, 7165-7168.	1.3	2
18	Time-Resolved Laser-Flash Photolysis Faraday Rotation Spectrometer: A New Tool for Total OH Reactivity Measurement and Free Radical Kinetics Research. Analytical Chemistry, 2020, 92, 4334-4339.	3.2	12

#	Article	lF	CITATIONS
19	Online analysis of gas-phase radical reactions using vacuum ultraviolet lamp photoionization and time-of-flight mass spectrometry. Review of Scientific Instruments, 2020, 91, 043201.	0.6	10
20	Implementation of the toroidal absorption cell with multi-layer patterns by a single ring surface. Optics Letters, 2020, 45, 5897.	1.7	25
21	Kinetics of dimethyl sulfide (DMS) reactions with isoprene-derived Criegee intermediates studied with direct UV absorption. Atmospheric Chemistry and Physics, 2020, 20, 12983-12993.	1.9	3
22	The sensitizing effects of NO2 and NO on methane low temperature oxidation in a jet stirred reactor. Proceedings of the Combustion Institute, 2019, 37, 667-675.	2.4	124
23	ROOOH: a missing piece of the puzzle for OH measurements in low-NO environments?. Atmospheric Chemistry and Physics, 2019, 19, 349-362.	1.9	32
24	The reaction of peroxy radicals with OH radicals. Chemical Physics Letters, 2019, 725, 102-108.	1.2	28
25	First detection of a key intermediate in the oxidation of fuel + NO systems: HONO. Chemical Physics Letters, 2019, 719, 22-26.	1.2	21
26	Water Vapor Does Not Catalyze the Reaction between Methanol and OH Radicals. Angewandte Chemie, 2019, 131, 5067-5071.	1.6	3
27	Water Vapor Does Not Catalyze the Reaction between Methanol and OH Radicals. Angewandte Chemie - International Edition, 2019, 58, 5013-5017.	7.2	16
28	Insights into the Reactions of Hydroxyl Radical with Diolefins from Atmospheric to Combustion Environments. Journal of Physical Chemistry A, 2019, 123, 2261-2271.	1.1	14
29	A vacuum ultraviolet photoionization timeâ€ofâ€flight mass spectrometer with high sensitivity for study of gasâ€phase radical reaction in a flow tube. International Journal of Chemical Kinetics, 2019, 51, 178-188.	1.0	18
30	Improved Chemical Amplification Instrument by Using a Nafion Dryer as an Amplification Reactor for Quantifying Atmospheric Peroxy Radicals under Ambient Conditions. Analytical Chemistry, 2019, 91, 776-779.	3.2	7
31	Valence shell threshold photoelectron spectroscopy of C ₃ H _x (<i>x</i> =) Tj ETQq1 1 C).784314 r 1.3	gBT/Overlo
32	Impact of the spectral and spatial properties of natural light on indoor gas-phase chemistry: Experimental and modeling study. Indoor Air, 2018, 28, 426-440.	2.0	24
33	Absorption spectrum and absorption cross sections of the 2ν 1 band of HO 2 between 20 and 760†Torr air in the range 6636 and 6639Åcm â~1. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 211, 107-114.	1.1	13
34	The reaction of fluorine atoms with methanol: yield of CH ₃ O/CH ₂ OH and rate constant of the reactions CH ₃ O + CH ₃ O and CH ₃ O + HO ₂ . Physical Chemistry Chemical Physics, 2018, 20, 10660-10670.	1.3	29
35	The reaction of hydroxyl and methylperoxy radicals is not a major source of atmospheric methanol. Nature Communications, 2018, 9, 4343.	5.8	32
36	Experimental and theoretical investigation of the reaction of RO ₂ radicals with OH radicals: Dependence of the HO ₂ yield on the size of the alkyl group. International Journal of Chemical Kinetics, 2018, 50, 670-680.	1.0	26

#	Article	IF	CITATIONS
37	Incoherent broad-band cavity enhanced absorption spectroscopy for sensitive and rapid molecular iodine detection in the presence of aerosols and water vapour. Optics and Laser Technology, 2018, 108, 466-479.	2.2	9
38	Measuring hydroperoxide chain-branching agents during n-pentane low-temperature oxidation. Proceedings of the Combustion Institute, 2017, 36, 333-342.	2.4	66
39	Identification of the major HO _x radical pathways in an indoor air environment. Indoor Air, 2017, 27, 434-442.	2.0	20
40	Communication: On the first ionization threshold of the C2H radical. Journal of Chemical Physics, 2017, 146, 011101.	1.2	8
41	H-Abstraction by OH from Large Branched Alkanes: Overall Rate Measurements and Site-Specific Tertiary Rate Calculations. Journal of Physical Chemistry A, 2017, 121, 927-937.	1.1	11
42	The Reaction between CH ₃ O ₂ and OH Radicals: Product Yields and Atmospheric Implications. Environmental Science & amp; Technology, 2017, 51, 2170-2177.	4.6	51
43	Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of <i>n-</i> Heptane and <i>n-</i> Decane. Journal of Physical Chemistry A, 2017, 121, 1861-1876.	1.1	31
44	Experimental and Theoretical Investigation of the Reaction NO + OH + O2 → HO2 + NO2. Journal of Physical Chemistry A, 2017, 121, 4652-4657.	1.1	3
45	Kinetics of the photolysis and OH reaction of 4-hydroxy-4-methyl-2-pentanone: Atmospheric implications. Atmospheric Environment, 2017, 150, 256-263.	1.9	7
46	Atmospheric Chemistry of αâ€Diketones: Kinetics of C ₅ and C ₆ Compounds with Cl Atoms and OH Radicals. International Journal of Chemical Kinetics, 2017, 49, 112-118.	1.0	4
47	Gas-phase UV absorption cross-sections and photolysis kinetics of 4-hydroxy-3-hexanone: Atmospheric implications. Chemical Physics Letters, 2017, 688, 43-46.	1.2	3
48	Experimental and theoretical investigations of the kinetics and mechanism of the ClÂ+ 4-hydroxy-4-methyl-2-pentanone reaction. Atmospheric Environment, 2017, 166, 315-326.	1.9	12
49	Rate constants of the reaction of C2–C4 peroxy radicals with OH radicals. Chemical Physics Letters, 2017, 684, 245-249.	1.2	20
50	Measurement of line strengths in the Âf 2 A' â† <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mover accent="true"><mml:mi mathvariant="normal">X<mml:mo>˜</mml:mo>2 A―transition of</mml:mi </mml:mover </mml:math 	1.1	12
51	HO 2 and DO 2. Journal of Quantitative Spectroscopy and Radiative Transfer, 2017, 201, 161-170. Assessment of indoor HONO formation mechanisms based on in situ measurements and modeling. Indoor Air, 2017, 27, 443-451.	2.0	17
52	Comparison of OH reactivity measurements in the atmospheric simulation chamber SAPHIR. Atmospheric Measurement Techniques, 2017, 10, 4023-4053.	1.2	74
53	Synchrotron-based valence shell photoionization of CH radical. Journal of Chemical Physics, 2016, 144, 204307.	1.2	19
54	The 2015 edition of the GEISA spectroscopic database. Journal of Molecular Spectroscopy, 2016, 327, 31-72.	0.4	311

#	Article	IF	CITATIONS
55	Cross Section of OH Radical Overtone Transition near 7028 cm ^{–1} and Measurement of the Rate Constant of the Reaction of OH with HO ₂ Radicals. Journal of Physical Chemistry A, 2016, 120, 7051-7059.	1.1	28
56	Rate Constant of the Reaction between CH ₃ O ₂ Radicals and OH Radicals Revisited. Journal of Physical Chemistry A, 2016, 120, 8923-8932.	1.1	41
57	The Rotationally-Resolved Absorption Spectrum of Formaldehyde from 6547 to 7051â€ ⁻ cm ^{â^'1} . Zeitschrift Fur Physikalische Chemie, 2015, 229, 1609-1624.	1.4	7
58	Intercomparison of the comparative reactivity method (CRM) and pump–probe technique for measuring total OH reactivity in an urban environment. Atmospheric Measurement Techniques, 2015, 8, 4243-4264.	1.2	30
59	Critical evaluation of the potential energy surface of the CH3 + HO2reaction system. Journal of Chemical Physics, 2015, 142, 054308.	1.2	11
60	Threshold photoelectron spectroscopy of the imidogen radical. Journal of Electron Spectroscopy and Related Phenomena, 2015, 203, 25-30.	0.8	22
61	Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether. Journal of Physical Chemistry A, 2015, 119, 7905-7923.	1.1	85
62	Synchrotron-based double imaging photoelectron/photoion coincidence spectroscopy of radicals produced in a flow tube: OH and OD. Journal of Chemical Physics, 2015, 142, 164201.	1.2	60
63	Investigation of the Gas-Phase Photolysis and Temperature-Dependent OH Reaction Kinetics of 4-Hydroxy-2-butanone. Environmental Science & Technology, 2015, 49, 12178-12186.	4.6	15
64	Low-Pressure Photolysis of 2,3-Pentanedione in Air: Quantum Yields and Reaction Mechanism. Journal of Physical Chemistry A, 2015, 119, 12781-12789.	1.1	15
65	Experimental determination of the rate constant of the reaction between C 2 H 5 O 2 and OH radicals. Chemical Physics Letters, 2015, 619, 196-200.	1.2	26
66	Photolysis of CH3CHO at 248 nm: Evidence of triple fragmentation from primary quantum yield of CH3 and HCO radicals and H atoms. Journal of Chemical Physics, 2014, 140, 214308.	1.2	30
67	Reactivity of 3-hydroxy-3-methyl-2-butanone: Photolysis and OH reaction kinetics. Atmospheric Environment, 2014, 98, 540-548.	1.9	12
68	Quantitative IBBCEAS measurements of I2 in the presence of aerosols. Applied Physics B: Lasers and Optics, 2014, 114, 421-432.	1.1	9
69	Direct Measurement of the Equilibrium Constants of the Reaction of Formaldehyde and Acetaldehyde with HO ₂ Radicals. International Journal of Chemical Kinetics, 2014, 46, 245-259.	1.0	22
70	Measurement of the Rate of Hydrogen Peroxide Thermal Decomposition in a Shock Tube Using Quantum Cascade Laser Absorption Near 7.7 μm. International Journal of Chemical Kinetics, 2014, 46, 275-284.	1.0	30
71	The Reaction of CH ₃ O ₂ Radicals with OH Radicals: A Neglected Sink for CH ₃ O ₂ in the Remote Atmosphere. Environmental Science & Technology, 2014, 48, 7700-7701.	4.6	54
72	Rate constant of the reaction between CH3O2 and OH radicals. Chemical Physics Letters, 2014, 593, 7-13.	1.2	68

#	Article	IF	CITATIONS
73	Photolysis of 2,3-pentanedione and 2,3-hexanedione: Kinetics, quantum yields, and product study in a simulation chamber. Atmospheric Environment, 2014, 82, 250-257.	1.9	18
74	Quantification of OH and HO ₂ radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20014-20017.	3.3	65
75	Absorption Spectrum and Absolute Absorption Cross Sections of CH ₃ O ₂ Radicals and CH ₃ I Molecules in the Wavelength Range 7473–7497 cm ^{–1} . Journal of Physical Chemistry A, 2013, 117, 12802-12811.	1.1	27
76	Experimental and modeling study of the oxidation of n-butane in a jet stirred reactor using cw-CRDS measurements. Physical Chemistry Chemical Physics, 2013, 15, 19686.	1.3	42
77	Photolysis of CF3CH2CHO in the Presence of O2 at 248 and 266 nm: Quantum Yields, Products, and Mechanism. Journal of Physical Chemistry A, 2013, 117, 10661-10670.	1.1	3
78	Note: A laser-flash photolysis and laser-induced fluorescence detection technique for measuring total HO2 reactivity in ambient air. Review of Scientific Instruments, 2013, 84, 076106.	0.6	8
79	Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 13294-13299.	3.3	168
80	HOx and ROx Radicals in Atmospheric Chemistry. NATO Science for Peace and Security Series C: Environmental Security, 2013, , 77-92.	0.1	2
81	Kinetic Studies of Elementary Chemical Steps with Relevance in Combustion and Environmental Chemistry. Green Energy and Technology, 2013, , 607-628.	0.4	0
82	Photocatalytic Decomposition of H ₂ O ₂ on Different TiO ₂ Surfaces Along with the Concurrent Generation of HO ₂ Radicals Monitored Using Cavity Ring Down Spectroscopy. Journal of Physical Chemistry C, 2012, 116, 10090-10097.	1.5	62
83	Quantification of Hydrogen Peroxide during the Low-Temperature Oxidation of Alkanes. Journal of the American Chemical Society, 2012, 134, 11944-11947.	6.6	46
84	Gas-Phase Reaction of Hydroxyl Radical with Hexamethylbenzene. Journal of Physical Chemistry A, 2012, 116, 12189-12197.	1.1	18
85	Formation of HO ₂ Radicals from the 248 nm Two-Photon Excitation of Different Aromatic Hydrocarbons in the Presence of O ₂ . Journal of Physical Chemistry A, 2012, 116, 6231-6239.	1.1	5
86	Absolute absorption cross sections for two selected lines of formaldehyde around 6625cmâ^'1. Journal of Molecular Spectroscopy, 2012, 281, 18-23.	0.4	10
87	Microcontroller based resonance tracking unit for time resolved continuous wave cavity-ringdown spectroscopy measurements. Review of Scientific Instruments, 2012, 83, 043110.	0.6	28
88	Detection of some stable species during the oxidation of methane by coupling a jet-stirred reactor (JSR) to cw-CRDS. Chemical Physics Letters, 2012, 534, 1-7.	1.2	26
89	Atmospheric and kinetic studies of OH and HO2 by the FAGE technique. Journal of Environmental Sciences, 2012, 24, 78-86.	3.2	24
90	Simultaneous Time Resolved Detection of Trace Species using High Repetition Rate LIF and cw-CRDS. , 2012, , .		0

#	Article	IF	CITATIONS
91	First Direct Detection of HONO in the Reaction of Methylnitrite (CH ₃ ONO) with OH Radicals. Environmental Science & Technology, 2011, 45, 608-614.	4.6	11
92	Measurement of Absolute Absorption Cross Sections for Nitrous Acid (HONO) in the Near-Infrared Region by the Continuous Wave Cavity Ring-Down Spectroscopy (cw-CRDS) Technique Coupled to Laser Photolysis. Journal of Physical Chemistry A, 2011, 115, 10720-10728.	1.1	26
93	Atmospheric Chemistry of 2,3-Pentanedione: Photolysis and Reaction with OH Radicals. Journal of Physical Chemistry A, 2011, 115, 9160-9168.	1.1	16
94	First Cavity Ring-Down Spectroscopy HO ₂ Measurements in a Large Photoreactor. Zeitschrift Fur Physikalische Chemie, 2011, 225, 938-992.	1.4	8
95	Yield of HO ₂ Radicals in the OH-Initiated Oxidation of SO ₂ . Zeitschrift Fur Physikalische Chemie, 2011, 225, 1105-1115.	1.4	4
96	Direct observation of OH radicals after 565nm multi-photon excitation of NO2 in the presence of H2O. Chemical Physics Letters, 2011, 513, 12-16.	1.2	48
97	Simultaneous, time-resolved measurements of OH and HO2 radicals by coupling of high repetition rate LIF and cw-CRDS techniques to a laser photolysis reactor and its application toAtheAphotolysis of H2O2. Applied Physics B: Lasers and Optics, 2011, 103, 725-733.	1.1	48
98	OH RADICAL REACTIVITY MEASUREMENTS BY FAGE. Environmental Engineering and Management Journal, 2011, 10, 107-114.	0.2	15
99	HO 2 Formation from the Photoexcitation of Benzene/O 2 Mixtures at 248 nm: An Energy Dependence Study. ChemPhysChem, 2010, 11, 3867-3873.	1.0	10
100	Direct detection of HO2 radicals in the vicinity of TiO2 photocatalytic surfaces using cw-CRDS. Applied Catalysis B: Environmental, 2010, 99, 413-419.	10.8	18
101	A new technique for the selective measurement of atmospheric peroxy radical concentrations of HO ₂ and RO ₂ using a denuding method. Atmospheric Measurement Techniques, 2010, 3, 1547-1554.	1.2	20
102	OH Radicals and H ₂ O ₂ Molecules in the Gas Phase near to TiO ₂ Surfaces. Journal of Physical Chemistry C, 2010, 114, 3082-3088.	1.5	35
103	Kinetic investigations of the unimolecular decomposition of dimethylether behind shock waves. Reaction Kinetics and Catalysis Letters, 2009, 96, 279-289.	0.6	13
104	Kinetics of the reaction of OH radicals with CH3OH and CD3OD studied by laser photolysis coupled to high repetition rate laser induced fluorescence. Reaction Kinetics and Catalysis Letters, 2009, 96, 291-297.	0.6	26
105	Kinetics of the •OH-radical initiated reactions of acetic acid and its deuterated isomers. Reaction Kinetics and Catalysis Letters, 2009, 96, 299-309.	0.6	8
106	Theoretical Study on Reactions of HO ₂ Radical with Photodissociation Products of Cl ₂ SO (CISO and SO). Journal of Physical Chemistry A, 2009, 113, 9981-9987.	1.1	9
107	On the direct formation of HO2 radicals after 248Ânm irradiation of benzene C6H6 in the presence of O2. Applied Physics B: Lasers and Optics, 2008, 92, 379-385.	1.1	15
108	Detection of HO ₂ Radicals in the Photocatalytic Oxidation of Methyl Ethyl Ketone. Journal of Physical Chemistry C, 2008, 112, 2239-2243.	1.5	13

#	Article	IF	CITATIONS
109	Direct Detection of OH Radicals and Indirect Detection of H ₂ O ₂ Molecules in the Gas Phase near a TiO ₂ Photocatalyst Using LIF. Journal of Physical Chemistry C, 2008, 112, 9115-9119.	1.5	27
110	Formation of HO2 radicals from the photodissociation of H2O2 at 248nm. Journal of Chemical Physics, 2007, 126, 186101.	1.2	41
111	Allylic hydrogen abstraction II. H-abstraction from 1,4 type polyalkenes as a model for free radical trapping by polyunsaturated fatty acids (PUFAs). Physical Chemistry Chemical Physics, 2007, 9, 1931.	1.3	26
112	Measurements of Line Strengths in the 2ν ₁ Band of the HO ₂ Radical Using Laser Photolysis/Continuous Wave Cavity Ring-Down Spectroscopy (cw-CRDS). Journal of Physical Chemistry A, 2007, 111, 6959-6966.	1.1	68
113	Air-broadening coefficients of the HO2 radical in the 2ν1 band measured using cw-CRDS. Journal of Molecular Spectroscopy, 2007, 242, 64-69.	0.4	44
114	Rate Coefficients and Equilibrium Constant for the CH2CHO + O2 Reaction System. Journal of Physical Chemistry A, 2006, 110, 3238-3245.	1.1	34
115	Rate and Equilibrium Constant of the Reaction of 1-Methylvinoxy Radicals with O2: CH3COCH2+ O2↔ CH3COCH2O2â€. Journal of Physical Chemistry A, 2006, 110, 6667-6672.	1.1	26
116	Allylic H-Abstraction Mechanism:  The Potential Energy Surface of the Reaction of Propene with OH Radical. Journal of Chemical Theory and Computation, 2006, 2, 1575-1586.	2.3	66
117	Acetone-h6or -d6+ OH Reaction Products:Â Evidence for Heterogeneous Formation of Acetic Acid in a Simulation Chamber. Environmental Science & Technology, 2006, 40, 5956-5961.	4.6	16
118	About the co-product of the OH radical in the reaction of acetyl with O2 below atmospheric pressure. Chemical Physics Letters, 2006, 417, 154-158.	1.2	20
119	Near infrared cw-CRDS coupled to laser photolysis: Spectroscopy and kinetics of the HO2 radical. Applied Physics B: Lasers and Optics, 2006, 85, 383-389.	1.1	78
120	Use of cw-CRDS for studying the atmospheric oxidation of acetic acid in a simulation chamber. Applied Physics B: Lasers and Optics, 2006, 85, 467-476.	1.1	16
121	Falloff curves for the unimolecular decomposition of two acyl radicals: RCO (+M) → R + CO (+M) by pulsed laser photolysis coupled to time-resolved infrared diode laser absorption. International Journal of Chemical Kinetics, 2005, 37, 611-624.	1.0	3
122	Rate constants for the decomposition of 2-butoxy radicals and their reaction with NO and O2. Physical Chemistry Chemical Physics, 2004, 6, 4127.	1.3	11
123	Title is missing!. Journal of Atmospheric Chemistry, 2003, 46, 1-13.	1.4	16
124	Kinetic and Mechanistic Study of the Atmospheric Oxidation by OH Radicals of Allyl Acetate. Environmental Science & amp; Technology, 2002, 36, 4081-4086.	4.6	29
125	Pressure and temperature dependence of the rate constants for the association reactions of vinoxy and 1-methylvinoxy radicals with nitric oxideElectronic supplementary information (ESI) available: Experimental conditions and results for reactions (R1) and (R2). G2 molecular properties of the key structures for CH2CHO + NO and CH2C(CH3)O + NO reaction kinetics. See	1.3	18
126	The β C–C bond scission in alkoxy radicals: thermal unimolecular decomposition of t-butoxy radicals. Physical Chemistry Chemical Physics, 2000, 2, 1677-1683.	1.3	82

#	Article	IF	CITATIONS
127	Rate constants for the reactions of C2H5O, i-C3H7O, and n-C3H7O with NO and O2 as a function of temperature. International Journal of Chemical Kinetics, 1999, 31, 860-866.	1.0	49
128	The thermal unimolecular decomposition rate constants of ethoxy radicals. Physical Chemistry Chemical Physics, 1999, 1, 2935-2944.	1.3	91
129	Complete falloff curves for the unimolecular decomposition of i-propoxy radicals between 330 and 408 K. Physical Chemistry Chemical Physics, 1999, 1, 675-681.	1.3	58
130	Kinetic investigations of the reactions of toluene and of p-xylene with molecular oxygen between 1050 and 1400 K. Proceedings of the Combustion Institute, 1998, 27, 211-218.	0.3	26
131	Kinetic and mechanistic study of the pressure and temperature dependence of the reaction CH3O+NO. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3321-3330.	1.7	22
132	Rate constants for the reactions ofCH3O with CH2O, CH3CHO and i-C4H10. Journal De Chimie Physique Et De Physico-Chimie Biologique, 1998, 95, 2129-2142.	0.2	21
133	Temperature Dependence of the Gas Phase Reaction Rates of CF3O with Methane, Ethane, and Isobutane. The Journal of Physical Chemistry, 1995, 99, 15102-15107.	2.9	8
134	Experimental and modeling study of oxidation and autoignition of butane at high pressure. Combustion and Flame, 1994, 96, 201-211.	2.8	137
135	Elementary Steps in the Pyrolysis of Toluene and Benzyl Radicals. Zeitschrift Fur Physikalische Chemie, 1990, 167, 1-16.	1.4	67
136	Mono- and bi-nuclear four-membered methanide auracycles; synthesis and reactivity. X-Ray structure of cis-[Au(C6F5)2(SPPh2O)(CH2PPh2Me)]. Journal of the Chemical Society Dalton Transactions, 1988, , 2323-2327.	1.1	11
137	Synthesis of o-nitrophenylplatinum(IV) complexes; crystal and molecular structure of dichlorobis(2=nitrophenyl=Câ€2O)platinum(IV). Journal of the Chemical Society Dalton Transactions, 1987, , 881-884.	1.1	16
138	Mono- and bi-nuclear gold(I) and gold(III) complexes with S2C–PR3ligands. X-Ray crystal structures of [Au(C6F5)3(S2C–PEt3)] and [Au2(µ-S2C–PEt3)-(C6F5)6]·Ch2Cl2. Journal of the Chemical Society Dalton Transactions, 1987, , 3017-3022.	1.1	18
139	Di- and tetra-nuclear complexes with bis(diphenylphosphino)amide and bis(diphenylphosphino)methanide as bi- and tri-dentate ligands. X-Ray structures of [(Ph3P)(O3ClO)AgN(Ph2PAuPPh2)2NAg(OClO3)(PPh3)] and [(C6F5)AuCH(Ph2PAuPPh2)2ChAu(C6F5)]. lournal of the Chemical Society Chemical Communications. 1986 509-510.	2.0	43
140	Synthesis and reactivity of bis(o-nitrophenyl)platinum. X-Ray crystal and molecular structure of [Pt{o-C6H4N(O)O}(o-C6H4NO2)(PPh3)]. Journal of the Chemical Society Dalton Transactions, 1986, , 2215.	1.1	25
141	Some attempts to prepare five-co-ordinated gold(III) complexes. Crystal and molecular structures of [Au(C6H4CH2NMe2-2)(phen)(PPh3)][BF4]2A·CH2Cl2, [Au(C6H4CH2NMe2-2)(NC9H6O)]BF4, and [Au(C6H4CH2NMe2-2)(H2NC6H4S)]ClO4. Journal of the Chemical Society Dalton Transactions, 1986, , 2361-2366.	1.1	42
142	Synthesis of mixed diarylgold(III) complexes. Crystal structure of cis-[2-(phenylazo)phenyl][2-{(dimethylamino)methyl}phenyl]gold(III) tetrachloroaurate. Journal of Organometallic Chemistry, 1986, 310, 401-409.	0.8	47
143	Mono-, bi- and trinuclear bis(diphenylarsino)methane gold complexes. Crystal and molecular structure of [{(C6F5)3Au(Ph2AsCH2AsPh2)}2Ag(OClO3)]dd]Dedicated to Professor Rafael Usón on his 60th birthday Inorganica Chimica Acta, 1986, 121, 39-45.	1.2	11
144	Diastereoselective synthesis of 2,3,4-trisubstituted Î ³ -lactols and Î ³ -lactones via regio- and stereocontrolled opening of a 1,2-epoxy-4-hydroxyalkyl carbamate with hetero-nucleophiles. Tetrahedron Letters, 1986, 27, 3595-3598.	0.7	17

#	Article	IF	CITATIONS
145	Cl-Initiated oxidation of methacrolein under NO _{<i>x</i>} -free conditions studied by VUV photoionization mass spectrometry. Physical Chemistry Chemical Physics, 0, , .	1.3	0