
Jeffrey L Wrana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7627548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signal Transduction by the TGF-beta Superfamily. Science, 2002, 296, 1646-1647.	6.0	1,230
2	Exosomes Mediate Stromal Mobilization of Autocrine Wnt-PCP Signaling in Breast Cancer Cell Migration. Cell, 2012, 151, 1542-1556.	13.5	1,112
3	Functional Genomics Reveals a BMP-Driven Mesenchymal-to-Epithelial Transition in the Initiation of Somatic Cell Reprogramming. Cell Stem Cell, 2010, 7, 64-77.	5.2	921
4	Regulation of the Polarity Protein Par6 by TGFÂ Receptors Controls Epithelial Cell Plasticity. Science, 2005, 307, 1603-1609.	6.0	824
5	A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature, 1999, 400, 687-693.	13.7	762
6	Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Science Immunology, 2020, 5, .	5.6	714
7	Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nature Biotechnology, 2009, 27, 199-204.	9.4	654
8	High-Throughput Mapping of a Dynamic Signaling Network in Mammalian Cells. Science, 2005, 307, 1621-1625.	6.0	651
9	The Crumbs Complex Couples Cell Density Sensing to Hippo-Dependent Control of the TGF-β-SMAD Pathway. Developmental Cell, 2010, 19, 831-844.	3.1	602
10	TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nature Cell Biology, 2008, 10, 837-848.	4.6	576
11	A Highly Conserved Program of Neuronal Microexons Is Misregulated in Autistic Brains. Cell, 2014, 159, 1511-1523.	13.5	546
12	Smad2 and Smad3 Positively and Negatively Regulate TGFβ-Dependent Transcription through the Forkhead DNA-Binding Protein FAST2. Molecular Cell, 1998, 2, 109-120.	4.5	499
13	Regulation of Cell Polarity and Protrusion Formation by Targeting RhoA for Degradation. Science, 2003, 302, 1775-1779.	6.0	495
14	The Hippo Pathway Regulates Wnt/ \hat{l}^2 -Catenin Signaling. Developmental Cell, 2010, 18, 579-591.	3.1	490
15	Yap-dependent reprogramming of Lgr5+ stem cells drives intestinal regeneration and cancer. Nature, 2015, 526, 715-718.	13.7	458
16	Protein Interaction Network of the Mammalian Hippo Pathway Reveals Mechanisms of Kinase-Phosphatase Interactions. Science Signaling, 2013, 6, rs15.	1.6	411
17	An experimentally derived confidence score for binary protein-protein interactions. Nature Methods, 2009, 6, 91-97.	9.0	397
18	Bone Morphogenetic Proteins Regulate the Developmental Program of Human Hematopoietic Stem Cells. Journal of Experimental Medicine, 1999, 189, 1139-1148.	4.2	354

#	Article	IF	CITATIONS
19	Single-cell transcriptomes of the regenerating intestine reveal a revival stem cell. Nature, 2019, 569, 121-125.	13.7	327
20	MBNL proteins repress ES-cell-specific alternative splicing and reprogramming. Nature, 2013, 498, 241-245.	13.7	326
21	YAP/TAZ Are Mechanoregulators of TGF-β-Smad Signaling and Renal Fibrogenesis. Journal of the American Society of Nephrology: JASN, 2016, 27, 3117-3128.	3.0	316
22	TGF-β induces assembly of a Smad2–Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nature Cell Biology, 2001, 3, 587-595.	4.6	297
23	Structural Basis of Smad2 Recognition by the Smad Anchor for Receptor Activation. Science, 2000, 287, 92-97.	6.0	276
24	Essential Gene Profiles in Breast, Pancreatic, and Ovarian Cancer Cells. Cancer Discovery, 2012, 2, 172-189.	7.7	276
25	Switch Enhancers Interpret TGF-β and Hippo Signaling to Control Cell Fate in Human Embryonic Stem Cells. Cell Reports, 2013, 5, 1611-1624.	2.9	250
26	Yap- and Cdc42-Dependent Nephrogenesis and Morphogenesis during Mouse Kidney Development. PLoS Genetics, 2013, 9, e1003380.	1.5	239
27	ProHits: integrated software for mass spectrometry–based interaction proteomics. Nature Biotechnology, 2010, 28, 1015-1017.	9.4	202
28	FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes and Development, 2001, 15, 1257-1271.	2.7	191
29	The disparate role of BMP in stem cell biology. Oncogene, 2005, 24, 5713-5721.	2.6	179
30	Loss of the Timp gene family is sufficient for the acquisition of the CAF-like cell state. Nature Cell Biology, 2014, 16, 889-901.	4.6	174
31	YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nature Neuroscience, 2016, 19, 879-887.	7.1	148
32	Multilayered Control of Alternative Splicing Regulatory Networks by Transcription Factors. Molecular Cell, 2017, 65, 539-553.e7.	4.5	143
33	A Late Transition in Somatic Cell Reprogramming Requires Regulators Distinct from the Pluripotency Network. Cell Stem Cell, 2012, 11, 769-782.	5.2	142
34	Disulfiram when Combined with Copper Enhances the Therapeutic Effects of Temozolomide for the Treatment of Glioblastoma. Clinical Cancer Research, 2016, 22, 3860-3875.	3.2	142
35	Signal integration in TGF-β, WNT, and Hippo pathways. F1000prime Reports, 2013, 5, 17.	5.9	132
36	A role for the TGFÂ-Par6 polarity pathway in breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14028-14033.	3.3	115

#	Article	IF	CITATIONS
37	TCF1 links GIPR signaling to the control of beta cell function and survival. Nature Medicine, 2016, 22, 84-90.	15.2	108
38	A systematic approach to identify novel cancer drug targets using machine learning, inhibitor design and high-throughput screening. Genome Medicine, 2014, 6, 57.	3.6	101
39	TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harbor Perspectives in Biology, 2017, 9, a022186.	2.3	101
40	Coordinating developmental signaling: novel roles for the Hippo pathway. Trends in Cell Biology, 2012, 22, 88-96.	3.6	93
41	Signaling by the TGFÂ Superfamily. Cold Spring Harbor Perspectives in Biology, 2013, 5, a011197-a011197.	2.3	93
42	Exosomes Mediate Mobilization of Autocrine Wnt10b to Promote Axonal Regeneration in the Injured CNS. Cell Reports, 2017, 20, 99-111.	2.9	88
43	Binary pan-cancer classes with distinct vulnerabilities defined by pro- or anti-cancer YAP/TEAD activity. Cancer Cell, 2021, 39, 1115-1134.e12.	7.7	86
44	Functional characterization of a PROTAC directed against BRAF mutant V600E. Nature Chemical Biology, 2020, 16, 1170-1178.	3.9	80
45	Cell competition during reprogramming gives rise to dominant clones. Science, 2019, 364, .	6.0	76
46	A feed forward loop enforces YAP/TAZ signaling during tumorigenesis. Nature Communications, 2018, 9, 3510.	5.8	75
47	Myc and SAGA rewire an alternative splicing network during early somatic cell reprogramming. Genes and Development, 2015, 29, 803-816.	2.7	73
48	The emerging role of exosomes in Wnt secretion and transport. Current Opinion in Genetics and Development, 2014, 27, 14-19.	1.5	69
49	Distinct Polarity Cues Direct Taz/Yap and TGFβ Receptor Localization to Differentially Control TGFβ-Induced Smad Signaling. Developmental Cell, 2015, 32, 652-656.	3.1	69
50	Regulation of Par6 by extracellular signals. Current Opinion in Cell Biology, 2006, 18, 206-212.	2.6	66
51	A scalable serology solution for profiling humoral immune responses to SARS oVâ€⊋ infection and vaccination. Clinical and Translational Immunology, 2022, 11, e1380.	1.7	65
52	The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2268-2279.	1.1	64
53	Reciprocal stabilization of ABL and TAZ regulates osteoblastogenesis through transcription factor RUNX2. Journal of Clinical Investigation, 2016, 126, 4482-4496.	3.9	60
54	Enteric glial cell heterogeneity regulates intestinal stem cell niches. Cell Stem Cell, 2022, 29, 86-100.e6.	5.2	56

#	Article	IF	CITATIONS
55	PTEN regulates cilia through Dishevelled. Nature Communications, 2015, 6, 8388.	5.8	55
56	A glucose meter interface for point-of-care gene circuit-based diagnostics. Nature Communications, 2021, 12, 724.	5.8	54
57	Protein interaction networks in medicine and disease. Proteomics, 2012, 12, 1706-1716.	1.3	53
58	A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nature Communications, 2016, 7, 12309.	5.8	52
59	Robust production of uniform human cerebral organoids from pluripotent stem cells. Life Science Alliance, 2020, 3, e202000707.	1.3	52
60	Genome-Wide Identification of Smad/Foxh1 Targets Reveals a Role for Foxh1 in Retinoic Acid Regulation and Forebrain Development. Developmental Cell, 2008, 14, 411-423.	3.1	51
61	An Expanded WW Domain Recognition Motif Revealed by the Interaction between Smad7 and the E3 Ubiquitin Ligase Smurf2*. Journal of Biological Chemistry, 2006, 281, 17069-17075.	1.6	50
62	Structural basis for specificity of TGFβ family receptor small molecule inhibitors. Cellular Signalling, 2012, 24, 476-483.	1.7	50
63	Hippo signalling in intestinal regeneration and cancer. Current Opinion in Cell Biology, 2017, 48, 17-25.	2.6	47
64	A lateral signalling pathway coordinates shape volatility during cell migration. Nature Communications, 2016, 7, 11714.	5.8	46
65	The TGFβ-Par6 polarity pathway: Linking the Par complex to EMT and breast cancer progression. Cell Cycle, 2010, 9, 623-624.	1.3	34
66	Next-generation RNA Sequencing of Archival Formalin-fixed Paraffin-embedded Urothelial Bladder Cancer. European Urology, 2014, 66, 982-986.	0.9	33
67	A multiplexed, next generation sequencing platform for high-throughput detection of SARS-CoV-2. Nature Communications, 2021, 12, 1405.	5.8	33
68	NUAK1 promotes organ fibrosis via YAP and TGF-β/SMAD signaling. Science Translational Medicine, 2022, 14, eaaz4028.	5.8	33
69	Cancer Cells Hijack PRC2 to Modify Multiple Cytokine Pathways. PLoS ONE, 2015, 10, e0126466.	1.1	29
70	Integrative analysis of kinase networks in TRAIL-induced apoptosis provides a source of potential targets for combination therapy. Science Signaling, 2015, 8, rs3.	1.6	29
71	Integrative genomics positions <scp>MKRN</scp> 1 as a novel ribonucleoprotein within the embryonic stem cell gene regulatory network. EMBO Reports, 2015, 16, 1334-1357.	2.0	28
72	Modeling the Control of TGF-β/Smad Nuclear Accumulation by the Hippo Pathway Effectors, Taz/Yap. IScience, 2020, 23, 101416.	1.9	28

#	Article	IF	CITATIONS
73	Myofibroblast YAP/TAZ activation is a key step in organ fibrogenesis. JCI Insight, 2022, 7, .	2.3	28
74	Crucial Role of Postsynaptic Syntaxin 4 in Mediating Basal Neurotransmission and Synaptic Plasticity in Hippocampal CA1 Neurons. Cell Reports, 2018, 23, 2955-2966.	2.9	26
75	A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Research, 2020, 8, 41.	5.4	23
76	Recent advances in understanding contextual TGFÎ ² signaling. F1000Research, 2017, 6, 749.	0.8	22
77	Atypical function of a centrosomal module in WNT signalling drives contextual cancer cell motility. Nature Communications, 2019, 10, 2356.	5.8	22
78	Comparison of SARS-CoV-2 indirect and direct RT-qPCR detection methods. Virology Journal, 2021, 18, 99.	1.4	22
79	The RNF146/Tankyrase pathway maintains the junctional Crumbs complex through regulation of Angiomotin. Journal of Cell Science, 2016, 129, 3396-411.	1.2	21
80	The Secret Life of Smad4. Cell, 2009, 136, 13-14.	13.5	20
81	Human ortholog of <i>Drosophila</i> Melted impedes SMAD2 release from TGF-β receptor I to inhibit TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3000-9.	3.3	20
82	Overexpression of the Severe Acute Respiratory Syndrome Coronavirus-2 Receptor, Angiotensin-Converting Enzyme 2, in Diabetic Kidney Disease: Implications for Kidney Injury in Novel Coronavirus Disease 2019. Canadian Journal of Diabetes, 2021, 45, 162-166.e1.	0.4	19
83	TNFAIP8 controls murine intestinal stem cell homeostasis and regeneration by regulating microbiome-induced Akt signaling. Nature Communications, 2020, 11, 2591.	5.8	19
84	KATapulting toward Pluripotency and Cancer. Journal of Molecular Biology, 2017, 429, 1958-1977.	2.0	18
85	CHIP-MYTH: A novel interactive proteomics method for the assessment of agonist-dependent interactions of the human \hat{l}^22 -adrenergic receptor. Biochemical and Biophysical Research Communications, 2014, 445, 746-756.	1.0	17
86	A specialist-generalist framework for epithelial-mesenchymal plasticity in cancer. Trends in Cancer, 2022, 8, 358-368.	3.8	16
87	Phosphoserine-Dependent Regulation of Protein-Protein Interactions in the Smad Pathway. Structure, 2002, 10, 5-7.	1.6	15
88	Somatic driver mutation prevalence in 1844 prostate cancers identifies ZNRF3 loss as a predictor of metastatic relapse. Nature Communications, 2021, 12, 6248.	5.8	15
89	LUMIER: A Discovery Tool for Mammalian Protein Interaction Networks. Methods in Molecular Biology, 2017, 1550, 137-148.	0.4	12
90	Hospital Outbreak of the SARS-CoV-2 Delta Variant in Partially and Fully Vaccinated Patients and Healthcare Workers in Toronto, Canada. Infection Control and Hospital Epidemiology, 2021, , 1-10.	1.0	9

#	ARTICLE	IF	CITATIONS
91	Immunogenicity of convalescent and vaccinated sera against clinical isolates of ancestral SARS-CoV-2, Beta, Delta, and Omicron variants. Med, 2022, 3, 422-432.e3.	2.2	9
92	Looking into the Black Box: Insights into the Mechanisms of Somatic Cell Reprogramming. Genes, 2011, 2, 81-106.	1.0	7
93	Analysis of Hippo and TGFÎ ² signaling in polarizing epithelial cells and mouse embryos. Differentiation, 2016, 91, 109-118.	1.0	7
94	DNA Methylation Reduces the Yes-Associated Protein 1/WW Domain Containing Transcription Regulator 1 Pathway and Prevents Pathologic Remodeling during Bladder Obstruction by Limiting Expression of BDNF. American Journal of Pathology, 2018, 188, 2177-2194.	1.9	7
95	Regulation of Rho GTPases from the lateral sides of migrating cells. Small GTPases, 2018, 9, 345-348.	0.7	6
96	Regulation of homeostasis and regeneration in the adult intestinal epithelium by the <scp>TGF</scp> â€Î² superfamily. Developmental Dynamics, 2023, 252, 445-462.	0.8	4
97	Multiple roles for the hippo effector yap in gut regeneration and cancer initiation. Molecular and Cellular Oncology, 2016, 3, e1143992.	0.3	2
98	Seeing is believing: Wnt3 localization in the gut epithelium. Cell Research, 2016, 26, 515-516.	5.7	1
99	TNFAIP8 is a central regulator of intestinal homeostasis and regeneration. FASEB Journal, 2020, 34, 1-1.	0.2	0
100	Sugar defeats the Hippo: Glycogen regulation of the Hippo pathway in liver. Molecular Cell, 2021, 81, 4768-4770.	4.5	0